Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Test the series below for convergence using the Ratio Test. n4 0.771 n=1 The limit of the ratio test simplifies to lim f(n) where f(n)

image text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribed
image text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribed
Test the series below for convergence using the Ratio Test. n4 0.771 n=1 The limit of the ratio test simplifies to lim f(n) where f(n) = The limit is: (enter oo for infinity if needed) Based on this, the series Select an answer v Select an answer Submit Question Diverges ConvergesTest the series below for convergence using the Ratio Test. n! n=1 The limit of the ratio test simplifies to lim f(n) where f(n) = The limit is: (enter oo for infinity if needed) Based on this, the series Select an answer Select an answer Submit Question Converges DivergesTest the series below for convergence using the Ratio Test. n + 3 33n14 n=1 The limit of the ratio test simplifies to lim f(n) where f (n) = The limit is: (enter oo for infinity if needed) Based on this, the series Select an answer v Submit QuestionTest the series below for convergence using the Root Test. 00 3n n= 6n + 5 The limit of the root test simplifies to lim If(n) | where 1 00 f(n) The limit is: (enter oo for infinity if needed) Based on this, the series O Converges O Diverges Submit QuestionTest the series below for convergence using the Root Test. 00 7n An + 1 n=1 The limit of the root test simplifies to lim f(n) | where f(n) The limit is: (enter oo for infinity if needed) Based on this, the series O Diverges O ConvergesTest the series below for convergence using the Root Test. 5n2 + 3 2n + 4 n=1 The limit of the root test simplifies to lim f(n) where f(n) The limit is: (enter oo for infinity if needed) Based on this, the series O Diverges O ConvergesTest the series below for convergence using the Ratio Test. 30 (-1)"32n+1 (2n + 1)! The limit of the ratio test simplifies to lim f(n) | where f (n) = The limit is: (enter oo for infinity if needed) Based on this, the series Select an answer Select an answer Submit Question Converges DivergesTest the series below for convergence using the Ratio Test. 00 792n 60-1 The limit of the ratio test simplifies to lim f(n) | where f(n) The limit is: (enter oo for infinity if needed) Based on this, the series Select an answer v Select an answer Converges Submit Question Diverges InconclusiveTest the series beLew for convergence using the Ratio Test. {enter ed for infinityr if needed} Based on this, the series _e|er::t n answer v Select an answer Diverges (In n) 2n (In n) 2n Given the series, where On = -. Use Root Test to test for convergence. nn nn n=1 a. The limit of the root test simplifies to lim If(n) | where f(n) = Val 71 100 f(n) = b. lim f(n)| = n 100 (enter oo for infinity if needed) c. Based on the above, the series O converges O divergesGiven the series, where an = . Use Root Test to test for convergence. n n a. The limit of the root test simplifies to lim |f(n) | where f(n) = \\ an) 71 900 f(n) = b. lim |f(n)| = (enter oo for infinity if needed) c. Based on the above, the series O converges O diverges

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Ordinary Differential Equations And Mechanical Systems

Authors: Jan Awrejcewicz

1st Edition

3319076590, 9783319076591

More Books

Students also viewed these Mathematics questions

Question

Self-awareness is linked to the businesss results.

Answered: 1 week ago

Question

1. Too reflect on self-management

Answered: 1 week ago

Question

Food supply

Answered: 1 week ago