Answered step by step
Verified Expert Solution
Link Copied!

Question

00
1 Approved Answer

The forces that magnets exert on one another are similar to electrical forces because both can attract and repel without touching, depending on which ends

The forces that magnets exert on one another are similar to electrical forces because both can attract and repel without touching, depending on which ends of the magnets are held near one another. Also like electrical forces, the strength of their interaction depends on the separation distance between the two magnets. Whereas electric charge is responsible for electrical forces, regions called magnetic poles give rise to magnetic forces. If you suspend a bar magnet at its center by a piece of string, you'll have a compass. One end, called the north-seeking pole, points northward, and the opposite end, called the south-seeking pole, points southward. More simply, these are called the north and south poles. All magnets have both a north and a south pole (some have more than one of each). Refrigerator magnets, popular in recent years, have narrow strips of alternating north and south poles. These magnets are strong enough to hold sheets of paper against a refrigerator door, but they have a very short range because the north and south poles are close together and cancel at short distances. In a simple bar magnet, a single north pole and a single south pole are located at opposite ends

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access with AI-Powered Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Elementary Statistics Picturing The World

Authors: Ron Larson, Betsy Farber

7th Edition

134683412, 978-0134683416

Students also viewed these Physics questions

Question

Find the matrix adjoint to this one. 0012 0121 1210 2100

Answered: 1 week ago