Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

The percentage of compression on the lumbar vertebral disks causes strain in an adult human. The strain can be measured by S(x) = 7.2956 In(0.0645012

image text in transcribed
image text in transcribed

The percentage of compression on the lumbar vertebral disks causes strain in an adult human. The strain can be measured by S(x) = 7.2956 In(0.0645012 x^0.95 + 1), where x is the physical load in kilograms (kg). Medical scientists are interested in the rate of change of the strain with respect to the load. This can be found with the derivative S'(x) or ds/dx. The derivative can be found by ... using the derivative rule for Inf(x)) to get 5'(x) = (7.2956) [1/(0.0645012 x 0.95 + 1)] * [(0.0645012) (0.95) x^(-0.05)), which can be simplified to approximately S'(x) = [0.44705] / [(0.0645012 x^0.95 + 1)*(x^ 0.05]] using the Chain Rule to get 5'(x) = 7.2956 In(0.0645012 x 0.95 + 1) ((0.0645012)(0.95) x^(-0.05]], which can be simplified to approximately S'(x) = [0.44705 In(0.0645012 x 0.95 + 1)] / [x^0.05] S'(x) = 7.2956 e^(0.0645012 x^0.95 + 1), where e is the irrational number approximated by 2.71828 using the derivative rule for In(f(x)) to get 5'(x) = (7.2956) [1/(0.0645012 x^0.95 + 1)], which can be simplified to S'(x) = 7.2956/(0.0645012 x^0.95 + 1)

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Calculus Early Transcendentals

Authors: Jon Rogawski

1st Edition

1429281685, 9781429281683

More Books

Students also viewed these Mathematics questions