Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

These are practice problems; Problem 1; Suppose that for the following linear regression model y=zr+s, IEE[e|1]=U the form of a skedastic function is E [ails]

image text in transcribed

These are practice problems;

Problem 1;

image text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribed
Suppose that for the following linear regression model y=zr+s, IEE[e|1]=U the form of a skedastic function is E [ails] = anew}, where h[-) is a known smooth function, and if is an additional parameter vector. Compare asymp totic variances of Optinnal GMM estimators of ,3 when only the rst restriction or both restrictioris are employed. Under what conditions does including the second restriction into a. set of moment restrictions reduce asymptotic variance? What if the function h(-) does not depend on ,6? What if in addition the distribution of c conditional on :c is symmetric? Consider the regression y= arte, E[ex] =0. where all variables are scalars. The random sample {y,, 2;}" is available. 1. The researcher also suspects that y, conditional on a, is distributed symmetrically around the conditional mean. Devise a Hausman specification test for this symmetry. Be specific and give all details at all stages when constructing the test. 2. Suppose that even though the Hausman test rejects symmetry, the researcher uses the as- sumption that ex ~ /(0, o'). Derive the asymptotic properties of the QML estimator of a.15.3 Optimal instrumentation of consumption function Consider the model q=41+15y2r+eh where Cd; is consumption at 1. y: is income at t, and all variables are jointly stationary. There is endogeneity in income, however, so that e; is not mean independent of y;. Howeverj the lagged values of income are predetermined, so e: is mean independent of the past history of y: and q: E [elmh 31-11 Ell21 Con - - -] = 0. Suppose a long time series on e; and y; is available. Untline how you would estimate the model parameters most efciently. Consider an ARH) ARCH {1] model: It = oral + st 1where the distribution of Es conditional on I_1 is symmetric around {1' with E[EEIIt_1] = (i 0:) + CEEE_1, where [l r: pm: if. 1 and If. = {Iii Tt_1, . . .} . 1. Let the space of admissible instruments for estimation of the 1412(1) part be .3; = {iti31_g, SJ]. 053 "5:. DO} . Using the optimMity condition, nd the optimal instrument as a function of the model para meters p and or. Outline how to construct its feasible version. 2. Use your intuition to speculate on relative efciency of the optimal instrument you found in part 1 versus the optimal instrument based on the conditional moment restriction E'[E1|Ig_1] = . Consider an AR(1) model at = prt-1 + et, where the disturbance et is generated as et = 17-1, where n, is an IID sequence with mean zero and variance one. 1. Show that E[etrt_;] = 0 for all j 2 1. Find the optimal instrument based on this system of unconditional moment restrictions. How many lags of r, does it employ? Outline how to construct its feasible version. 2. Show that EelIt_1] = 0, where It = {It, It_1,...} . Find the optimal instrument based on this conditional moment restriction. Outline how to construct its feasible version, or, if that is impossible, explain why

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Principles Of Microeconomics

Authors: N Gregory Mankiw

9th Edition

035713348X, 9780357133484

More Books

Students also viewed these Economics questions