Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

This is mlfq.py #! /usr/bin/env python import sys from optparse import OptionParser import random # finds the highest nonempty queue # -1 if they are

This is mlfq.py
#! /usr/bin/env python
import sys
from optparse import OptionParser
import random
# finds the highest nonempty queue
# -1 if they are all empty
def FindQueue():
q = hiQueue
while q > 0:
if len(queue[q]) > 0:
return q
q -= 1
if len(queue[0]) > 0:
return 0
return -1
def Abort(str):
sys.stderr.write(str + ' ')
exit(1)
#
# PARSE ARGUMENTS
#
parser = OptionParser()
parser.add_option('-s', '--seed', help='the random seed',
default=0, action='store', type='int', dest='seed')
parser.add_option('-n', '--numQueues',
help='number of queues in MLFQ (if not using -Q)',
default=3, action='store', type='int', dest='numQueues')
parser.add_option('-q', '--quantum', help='length of time slice (if not using -Q)',
default=10, action='store', type='int', dest='quantum')
parser.add_option('-a', '--allotment', help='length of allotment (if not using -A)',
default=1, action='store', type='int', dest='allotment')
parser.add_option('-Q', '--quantumList',
help='length of time slice per queue level, specified as ' + \
'x,y,z,... where x is the quantum length for the highest ' + \
'priority queue, y the next highest, and so forth',
default='', action='store', type='string', dest='quantumList')
parser.add_option('-A', '--allotmentList',
help='length of time allotment per queue level, specified as ' + \
'x,y,z,... where x is the # of time slices for the highest ' + \
'priority queue, y the next highest, and so forth',
default='', action='store', type='string', dest='allotmentList')
parser.add_option('-j', '--numJobs', default=3, help='number of jobs in the system',
action='store', type='int', dest='numJobs')
parser.add_option('-m', '--maxlen', default=100, help='max run-time of a job ' +
'(if randomly generating)', action='store', type='int',
dest='maxlen')
parser.add_option('-M', '--maxio', default=10,
help='max I/O frequency of a job (if randomly generating)',
action='store', type='int', dest='maxio')
parser.add_option('-B', '--boost', default=0,
help='how often to boost the priority of all jobs back to ' +
'high priority', action='store', type='int', dest='boost')
parser.add_option('-i', '--iotime', default=5,
help='how long an I/O should last (fixed constant)',
action='store', type='int', dest='ioTime')
parser.add_option('-S', '--stay', default=False,
help='reset and stay at same priority level when issuing I/O',
action='store_true', dest='stay')
parser.add_option('-I', '--iobump', default=False,
help='if specified, jobs that finished I/O move immediately ' + \
'to front of current queue',
action='store_true', dest='iobump')
parser.add_option('-l', '--jlist', default='',
help='a comma-separated list of jobs to run, in the form ' + \
'x1,y1,z1:x2,y2,z2:... where x is start time, y is run ' + \
'time, and z is how often the job issues an I/O request',
action='store', type='string', dest='jlist')
parser.add_option('-c', help='compute answers for me', action='store_true',
default=False, dest='solve')
(options, args) = parser.parse_args()
random.seed(options.seed)
# MLFQ: How Many Queues
numQueues = options.numQueues
quantum = {}
if options.quantumList != '':
# instead, extract number of queues and their time slic
quantumLengths = options.quantumList.split(',')
numQueues = len(quantumLengths)
qc = numQueues - 1
for i in range(numQueues):
quantum[qc] = int(quantumLengths[i])
qc -= 1
else:
for i in range(numQueues):
quantum[i] = int(options.quantum)
allotment = {}
if options.allotmentList != '':
allotmentLengths = options.allotmentList.split(',')
if numQueues != len(allotmentLengths):
print('number of allotments specified must match number of quantums')
exit(1)
qc = numQueues - 1
for i in range(numQueues):
allotment[qc] = int(allotmentLengths[i])
if qc != 0 and allotment[qc]
print('allotment must be positive integer')
exit(1)
qc -= 1
else:
for i in range(numQueues):
allotment[i] = int(options.allotment)
hiQueue = numQueues - 1
# MLFQ: I/O Model
# the time for each IO: not great to have a single fixed time but...
ioTime = int(options.ioTime)
# This tracks when IOs and other interrupts are complete
ioDone = {}
# This stores all info about the jobs
job = {}
# seed the random generator
random.seed(options.seed)
# jlist 'startTime,runTime,ioFreq:startTime,runTime,ioFreq:...'
jobCnt = 0
if options.jlist != '':
allJobs = options.jlist.split(':')
for j in allJobs:
jobInfo = j.split(',')
if len(jobInfo) != 3:
print('Badly formatted job string. Should be x1,y1,z1:x2,y2,z2:...')
print('where x is the startTime, y is the runTime, and z is the I/O frequency.')
exit(1)
assert(len(jobInfo) == 3)
startTime = int(jobInfo[0])
runTime = int(jobInfo[1])
ioFreq = int(jobInfo[2])
job[jobCnt] = {'currPri':hiQueue, 'ticksLeft':quantum[hiQueue],
'allotLeft':allotment[hiQueue], 'startTime':startTime,
'runTime':runTime, 'timeLeft':runTime, 'ioFreq':ioFreq, 'doingIO':False,
'firstRun':-1}
if startTime not in ioDone:
ioDone[startTime] = []
ioDone[startTime].append((jobCnt, 'JOB BEGINS'))
jobCnt += 1
else:
# do something random
for j in range(options.numJobs):
startTime = 0
runTime = int(random.random() * (options.maxlen - 1) + 1)
ioFreq = int(random.random() * (options.maxio - 1) + 1)
job[jobCnt] = {'currPri':hiQueue, 'ticksLeft':quantum[hiQueue],
'allotLeft':allotment[hiQueue], 'startTime':startTime,
'runTime':runTime, 'timeLeft':runTime, 'ioFreq':ioFreq, 'doingIO':False,
'firstRun':-1}
if startTime not in ioDone:
ioDone[startTime] = []
ioDone[startTime].append((jobCnt, 'JOB BEGINS'))
jobCnt += 1
numJobs = len(job)
print 'Here is the list of inputs:'
print 'OPTIONS jobs', numJobs
print 'OPTIONS queues', numQueues
for i in range(len(quantum)-1,-1,-1):
print 'OPTIONS allotments for queue %2d is %3d' % (i, allotment[i])
print 'OPTIONS quantum length for queue %2d is %3d' % (i, quantum[i])
print 'OPTIONS boost', options.boost
print 'OPTIONS ioTime', options.ioTime
print 'OPTIONS stayAfterIO', options.stay
print 'OPTIONS iobump', options.iobump
print ' '
print 'For each job, three defining characteristics are given:'
print ' startTime : at what time does the job enter the system'
print ' runTime : the total CPU time needed by the job to finish'
print ' ioFreq : every ioFreq time units, the job issues an I/O'
print ' (the I/O takes ioTime units to complete) '
print 'Job List:'
for i in range(numJobs):
print ' Job %2d: startTime %3d - runTime %3d - ioFreq %3d' % (i, job[i]['startTime'],
job[i]['runTime'],
job[i]['ioFreq'])
print ''
if options.solve == False:
print 'Compute the execution trace for the given workloads.'
print 'If you would like, also compute the response and turnaround'
print 'times for each of the jobs.'
print ''
print 'Use the -c flag to get the exact results when you are finished. '
exit(0)
# initialize the MLFQ queues
queue = {}
for q in range(numQueues):
queue[q] = []
# TIME IS CENTRAL
currTime = 0
# use these to know when we're finished
totalJobs = len(job)
finishedJobs = 0
print ' Execution Trace: '
while finishedJobs
# find highest priority job
# run it until either
# (a) the job uses up its time quantum
# (b) the job performs an I/O
# check for priority boost
if options.boost > 0 and currTime != 0:
if currTime % options.boost == 0:
print '[ time %d ] BOOST ( every %d )' % (currTime, options.boost)
# remove all jobs from queues (except high queue) and put them in high queue
for q in range(numQueues-1):
for j in queue[q]:
if job[j]['doingIO'] == False:
queue[hiQueue].append(j)
queue[q] = []
# change priority to high priority
# reset number of ticks left for all jobs (just for lower jobs?)
# add to highest run queue (if not doing I/O)
for j in range(numJobs):
# print '-> Boost %d (timeLeft %d)' % (j, job[j]['timeLeft'])
if job[j]['timeLeft'] > 0:
# print '-> FinalBoost %d (timeLeft %d)' % (j, job[j]['timeLeft'])
job[j]['currPri'] = hiQueue
job[j]['ticksLeft'] = allotment[hiQueue]
# print 'BOOST END: QUEUES look like:', queue
# check for any I/Os done
if currTime in ioDone:
for (j, type) in ioDone[currTime]:
q = job[j]['currPri']
job[j]['doingIO'] = False
print '[ time %d ] %s by JOB %d' % (currTime, type, j)
if options.iobump == False or type == 'JOB BEGINS':
queue[q].append(j)
else:
queue[q].insert(0, j)
# now find the highest priority job
currQueue = FindQueue()
if currQueue == -1:
print '[ time %d ] IDLE' % (currTime)
currTime += 1
continue
# there was at least one runnable job, and hence ...
currJob = queue[currQueue][0]
if job[currJob]['currPri'] != currQueue:
Abort('currPri[%d] does not match currQueue[%d]' % (job[currJob]['currPri'], currQueue))
job[currJob]['timeLeft'] -= 1
job[currJob]['ticksLeft'] -= 1
if job[currJob]['firstRun'] == -1:
job[currJob]['firstRun'] = currTime
runTime = job[currJob]['runTime']
ioFreq = job[currJob]['ioFreq']
ticksLeft = job[currJob]['ticksLeft']
allotLeft = job[currJob]['allotLeft']
timeLeft = job[currJob]['timeLeft']
print '[ time %d ] Run JOB %d at PRIORITY %d [ TICKS %d ALLOT %d TIME %d (of %d) ]' % \
(currTime, currJob, currQueue, ticksLeft, allotLeft, timeLeft, runTime)
if timeLeft
Abort('Error: should never have less than 0 time left to run')
# UPDATE TIME
currTime += 1
# CHECK FOR JOB ENDING
if timeLeft == 0:
print '[ time %d ] FINISHED JOB %d' % (currTime, currJob)
finishedJobs += 1
job[currJob]['endTime'] = currTime
# print 'BEFORE POP', queue
done = queue[currQueue].pop(0)
# print 'AFTER POP', queue
assert(done == currJob)
continue
# CHECK FOR IO
issuedIO = False
if ioFreq > 0 and (((runTime - timeLeft) % ioFreq) == 0):
# time for an IO!
print '[ time %d ] IO_START by JOB %d' % (currTime, currJob)
issuedIO = True
desched = queue[currQueue].pop(0)
assert(desched == currJob)
job[currJob]['doingIO'] = True
# this does the bad rule -- reset your tick counter if you stay at the same level
if options.stay == True:
job[currJob]['ticksLeft'] = quantum[currQueue]
job[currJob]['allotLeft'] = allotment[currQueue]
# add to IO Queue: but which queue?
futureTime = currTime + ioTime
if futureTime not in ioDone:
ioDone[futureTime] = []
print 'IO DONE'
ioDone[futureTime].append((currJob, 'IO_DONE'))
# CHECK FOR QUANTUM ENDING AT THIS LEVEL (BUT REMEMBER, THERE STILL MAY BE ALLOTMENT LEFT)
if ticksLeft == 0:
if issuedIO == False:
# IO HAS NOT BEEN ISSUED (therefor pop from queue)'
desched = queue[currQueue].pop(0)
assert(desched == currJob)
job[currJob]['allotLeft'] = job[currJob]['allotLeft'] - 1
if job[currJob]['allotLeft'] == 0:
# this job is DONE at this level, so move on
if currQueue > 0:
# in this case, have to change the priority of the job
job[currJob]['currPri'] = currQueue - 1
job[currJob]['ticksLeft'] = quantum[currQueue-1]
job[currJob]['allotLeft'] = allotment[currQueue-1]
if issuedIO == False:
queue[currQueue-1].append(currJob)
else:
job[currJob]['ticksLeft'] = quantum[currQueue]
job[currJob]['allotLeft'] = allotment[currQueue]
if issuedIO == False:
queue[currQueue].append(currJob)
else:
# this job has more time at this level, so just push it to end
job[currJob]['ticksLeft'] = quantum[currQueue]
if issuedIO == False:
queue[currQueue].append(currJob)
# print out statistics
print ''
print 'Final statistics:'
responseSum = 0
turnaroundSum = 0
for i in range(numJobs):
response = job[i]['firstRun'] - job[i]['startTime']
turnaround = job[i]['endTime'] - job[i]['startTime']
print ' Job %2d: startTime %3d - response %3d - turnaround %3d' % (i, job[i]['startTime'],
response, turnaround)
responseSum += response
turnaroundSum += turnaround
print ' Avg %2d: startTime n/a - response %.2f - turnaround %.2f' % (i,
float(responseSum)umJobs,
float(turnaroundSum)umJobs)
print ' '
image text in transcribed
can i have the screenshots of the results too while running the each command asked in the questions.
Thank you!!
python 2.7 version.
#! /usr/bin/env python
import sys
from optparse import OptionParser
import random
# finds the highest nonempty queue
# -1 if they are all empty
def FindQueue():
q = hiQueue
while q > 0:
if len(queue[q]) > 0:
return q
q -= 1
if len(queue[0]) > 0:
return 0
return -1
def Abort(str):
sys.stderr.write(str + ' ')
exit(1)
#
# PARSE ARGUMENTS
#
parser = OptionParser()
parser.add_option('-s', '--seed', help='the random seed',
default=0, action='store', type='int', dest='seed')
parser.add_option('-n', '--numQueues',
help='number of queues in MLFQ (if not using -Q)',
default=3, action='store', type='int', dest='numQueues')
parser.add_option('-q', '--quantum', help='length of time slice (if not using -Q)',
default=10, action='store', type='int', dest='quantum')
parser.add_option('-a', '--allotment', help='length of allotment (if not using -A)',
default=1, action='store', type='int', dest='allotment')
parser.add_option('-Q', '--quantumList',
help='length of time slice per queue level, specified as ' + \
'x,y,z,... where x is the quantum length for the highest ' + \
'priority queue, y the next highest, and so forth',
default='', action='store', type='string', dest='quantumList')
parser.add_option('-A', '--allotmentList',
help='length of time allotment per queue level, specified as ' + \
'x,y,z,... where x is the # of time slices for the highest ' + \
'priority queue, y the next highest, and so forth',
default='', action='store', type='string', dest='allotmentList')
parser.add_option('-j', '--numJobs', default=3, help='number of jobs in the system',
action='store', type='int', dest='numJobs')
parser.add_option('-m', '--maxlen', default=100, help='max run-time of a job ' +
'(if randomly generating)', action='store', type='int',
dest='maxlen')
parser.add_option('-M', '--maxio', default=10,
help='max I/O frequency of a job (if randomly generating)',
action='store', type='int', dest='maxio')
parser.add_option('-B', '--boost', default=0,
help='how often to boost the priority of all jobs back to ' +
'high priority', action='store', type='int', dest='boost')
parser.add_option('-i', '--iotime', default=5,
help='how long an I/O should last (fixed constant)',
action='store', type='int', dest='ioTime')
parser.add_option('-S', '--stay', default=False,
help='reset and stay at same priority level when issuing I/O',
action='store_true', dest='stay')
parser.add_option('-I', '--iobump', default=False,
help='if specified, jobs that finished I/O move immediately ' + \
'to front of current queue',
action='store_true', dest='iobump')
parser.add_option('-l', '--jlist', default='',
help='a comma-separated list of jobs to run, in the form ' + \
'x1,y1,z1:x2,y2,z2:... where x is start time, y is run ' + \
'time, and z is how often the job issues an I/O request',
action='store', type='string', dest='jlist')
parser.add_option('-c', help='compute answers for me', action='store_true',
default=False, dest='solve')
(options, args) = parser.parse_args()
random.seed(options.seed)
# MLFQ: How Many Queues
numQueues = options.numQueues
quantum = {}
if options.quantumList != '':
# instead, extract number of queues and their time slic
quantumLengths = options.quantumList.split(',')
numQueues = len(quantumLengths)
qc = numQueues - 1
for i in range(numQueues):
quantum[qc] = int(quantumLengths[i])
qc -= 1
else:
for i in range(numQueues):
quantum[i] = int(options.quantum)
allotment = {}
if options.allotmentList != '':
allotmentLengths = options.allotmentList.split(',')
if numQueues != len(allotmentLengths):
print('number of allotments specified must match number of quantums')
exit(1)
qc = numQueues - 1
for i in range(numQueues):
allotment[qc] = int(allotmentLengths[i])
if qc != 0 and allotment[qc]
print('allotment must be positive integer')
exit(1)
qc -= 1
else:
for i in range(numQueues):
allotment[i] = int(options.allotment)
hiQueue = numQueues - 1
# MLFQ: I/O Model
# the time for each IO: not great to have a single fixed time but...
ioTime = int(options.ioTime)
# This tracks when IOs and other interrupts are complete
ioDone = {}
# This stores all info about the jobs
job = {}
# seed the random generator
random.seed(options.seed)
# jlist 'startTime,runTime,ioFreq:startTime,runTime,ioFreq:...'
jobCnt = 0
if options.jlist != '':
allJobs = options.jlist.split(':')
for j in allJobs:
jobInfo = j.split(',')
if len(jobInfo) != 3:
print('Badly formatted job string. Should be x1,y1,z1:x2,y2,z2:...')
print('where x is the startTime, y is the runTime, and z is the I/O frequency.')
exit(1)
assert(len(jobInfo) == 3)
startTime = int(jobInfo[0])
runTime = int(jobInfo[1])
ioFreq = int(jobInfo[2])
job[jobCnt] = {'currPri':hiQueue, 'ticksLeft':quantum[hiQueue],
'allotLeft':allotment[hiQueue], 'startTime':startTime,
'runTime':runTime, 'timeLeft':runTime, 'ioFreq':ioFreq, 'doingIO':False,
'firstRun':-1}
if startTime not in ioDone:
ioDone[startTime] = []
ioDone[startTime].append((jobCnt, 'JOB BEGINS'))
jobCnt += 1
else:
# do something random
for j in range(options.numJobs):
startTime = 0
runTime = int(random.random() * (options.maxlen - 1) + 1)
ioFreq = int(random.random() * (options.maxio - 1) + 1)
job[jobCnt] = {'currPri':hiQueue, 'ticksLeft':quantum[hiQueue],
'allotLeft':allotment[hiQueue], 'startTime':startTime,
'runTime':runTime, 'timeLeft':runTime, 'ioFreq':ioFreq, 'doingIO':False,
'firstRun':-1}
if startTime not in ioDone:
ioDone[startTime] = []
ioDone[startTime].append((jobCnt, 'JOB BEGINS'))
jobCnt += 1
numJobs = len(job)
print 'Here is the list of inputs:'
print 'OPTIONS jobs', numJobs
print 'OPTIONS queues', numQueues
for i in range(len(quantum)-1,-1,-1):
print 'OPTIONS allotments for queue %2d is %3d' % (i, allotment[i])
print 'OPTIONS quantum length for queue %2d is %3d' % (i, quantum[i])
print 'OPTIONS boost', options.boost
print 'OPTIONS ioTime', options.ioTime
print 'OPTIONS stayAfterIO', options.stay
print 'OPTIONS iobump', options.iobump
print ' '
print 'For each job, three defining characteristics are given:'
print ' startTime : at what time does the job enter the system'
print ' runTime : the total CPU time needed by the job to finish'
print ' ioFreq : every ioFreq time units, the job issues an I/O'
print ' (the I/O takes ioTime units to complete) '
print 'Job List:'
for i in range(numJobs):
print ' Job %2d: startTime %3d - runTime %3d - ioFreq %3d' % (i, job[i]['startTime'],
job[i]['runTime'],
job[i]['ioFreq'])
print ''
if options.solve == False:
print 'Compute the execution trace for the given workloads.'
print 'If you would like, also compute the response and turnaround'
print 'times for each of the jobs.'
print ''
print 'Use the -c flag to get the exact results when you are finished. '
exit(0)
# initialize the MLFQ queues
queue = {}
for q in range(numQueues):
queue[q] = []
# TIME IS CENTRAL
currTime = 0
# use these to know when we're finished
totalJobs = len(job)
finishedJobs = 0
print ' Execution Trace: '
while finishedJobs
# find highest priority job
# run it until either
# (a) the job uses up its time quantum
# (b) the job performs an I/O
# check for priority boost
if options.boost > 0 and currTime != 0:
if currTime % options.boost == 0:
print '[ time %d ] BOOST ( every %d )' % (currTime, options.boost)
# remove all jobs from queues (except high queue) and put them in high queue
for q in range(numQueues-1):
for j in queue[q]:
if job[j]['doingIO'] == False:
queue[hiQueue].append(j)
queue[q] = []
# change priority to high priority
# reset number of ticks left for all jobs (just for lower jobs?)
# add to highest run queue (if not doing I/O)
for j in range(numJobs):
# print '-> Boost %d (timeLeft %d)' % (j, job[j]['timeLeft'])
if job[j]['timeLeft'] > 0:
# print '-> FinalBoost %d (timeLeft %d)' % (j, job[j]['timeLeft'])
job[j]['currPri'] = hiQueue
job[j]['ticksLeft'] = allotment[hiQueue]
# print 'BOOST END: QUEUES look like:', queue
# check for any I/Os done
if currTime in ioDone:
for (j, type) in ioDone[currTime]:
q = job[j]['currPri']
job[j]['doingIO'] = False
print '[ time %d ] %s by JOB %d' % (currTime, type, j)
if options.iobump == False or type == 'JOB BEGINS':
queue[q].append(j)
else:
queue[q].insert(0, j)
# now find the highest priority job
currQueue = FindQueue()
if currQueue == -1:
print '[ time %d ] IDLE' % (currTime)
currTime += 1
continue
# there was at least one runnable job, and hence ...
currJob = queue[currQueue][0]
if job[currJob]['currPri'] != currQueue:
Abort('currPri[%d] does not match currQueue[%d]' % (job[currJob]['currPri'], currQueue))
job[currJob]['timeLeft'] -= 1
job[currJob]['ticksLeft'] -= 1
if job[currJob]['firstRun'] == -1:
job[currJob]['firstRun'] = currTime
runTime = job[currJob]['runTime']
ioFreq = job[currJob]['ioFreq']
ticksLeft = job[currJob]['ticksLeft']
allotLeft = job[currJob]['allotLeft']
timeLeft = job[currJob]['timeLeft']
print '[ time %d ] Run JOB %d at PRIORITY %d [ TICKS %d ALLOT %d TIME %d (of %d) ]' % \
(currTime, currJob, currQueue, ticksLeft, allotLeft, timeLeft, runTime)
if timeLeft
Abort('Error: should never have less than 0 time left to run')
# UPDATE TIME
currTime += 1
# CHECK FOR JOB ENDING
if timeLeft == 0:
print '[ time %d ] FINISHED JOB %d' % (currTime, currJob)
finishedJobs += 1
job[currJob]['endTime'] = currTime
# print 'BEFORE POP', queue
done = queue[currQueue].pop(0)
# print 'AFTER POP', queue
assert(done == currJob)
continue
# CHECK FOR IO
issuedIO = False
if ioFreq > 0 and (((runTime - timeLeft) % ioFreq) == 0):
# time for an IO!
print '[ time %d ] IO_START by JOB %d' % (currTime, currJob)
issuedIO = True
desched = queue[currQueue].pop(0)
assert(desched == currJob)
job[currJob]['doingIO'] = True
# this does the bad rule -- reset your tick counter if you stay at the same level
if options.stay == True:
job[currJob]['ticksLeft'] = quantum[currQueue]
job[currJob]['allotLeft'] = allotment[currQueue]
# add to IO Queue: but which queue?
futureTime = currTime + ioTime
if futureTime not in ioDone:
ioDone[futureTime] = []
print 'IO DONE'
ioDone[futureTime].append((currJob, 'IO_DONE'))
# CHECK FOR QUANTUM ENDING AT THIS LEVEL (BUT REMEMBER, THERE STILL MAY BE ALLOTMENT LEFT)
if ticksLeft == 0:
if issuedIO == False:
# IO HAS NOT BEEN ISSUED (therefor pop from queue)'
desched = queue[currQueue].pop(0)
assert(desched == currJob)
job[currJob]['allotLeft'] = job[currJob]['allotLeft'] - 1
if job[currJob]['allotLeft'] == 0:
# this job is DONE at this level, so move on
if currQueue > 0:
# in this case, have to change the priority of the job
job[currJob]['currPri'] = currQueue - 1
job[currJob]['ticksLeft'] = quantum[currQueue-1]
job[currJob]['allotLeft'] = allotment[currQueue-1]
if issuedIO == False:
queue[currQueue-1].append(currJob)
else:
job[currJob]['ticksLeft'] = quantum[currQueue]
job[currJob]['allotLeft'] = allotment[currQueue]
if issuedIO == False:
queue[currQueue].append(currJob)
else:
# this job has more time at this level, so just push it to end
job[currJob]['ticksLeft'] = quantum[currQueue]
if issuedIO == False:
queue[currQueue].append(currJob)
# print out statistics
print ''
print 'Final statistics:'
responseSum = 0
turnaroundSum = 0
for i in range(numJobs):
response = job[i]['firstRun'] - job[i]['startTime']
turnaround = job[i]['endTime'] - job[i]['startTime']
print ' Job %2d: startTime %3d - response %3d - turnaround %3d' % (i, job[i]['startTime'],
response, turnaround)
responseSum += response
turnaroundSum += turnaround
print ' Avg %2d: startTime n/a - response %.2f - turnaround %.2f' % (i,
float(responseSum)umJobs,
float(turnaroundSum)umJobs)
print ' '
image text in transcribed
12 SCHEDULING: THE MULTI-LEVEL FEEDBACK QUEUE Homework (Simulation) This program, mlfg.py, allows you to see how the MLFQ scheduler presented in this chapter behaves. See the README for details. Questions 1. Run a few randomly-generated problems with just two jobs and two queues; compute the MLFQ execution trace for each. Make your life easier by limiting the length of each job and turning off /Os. 2. How would you run the scheduler to reproduce each of the exam- ples in the chapter? 3. How would you configure the scheduler parameters to behave just like a round-robin scheduler? 4. Craft a workload with two jobs and scheduler parameters so that one job takes advantage of the older Rules 4a and 4b (turned on with the -s flag) to game the scheduler and obtain 99% of the CPU over a particular time interval. 5. Given a system with a quantum length of 10 ms in its highest queue, how often would you have to boost jobs back to the highest priority level (with the -B flag) in order to guarantee that a single long- running (and potentially-starving) job gets at least 5% of the CPU? 6. One question that arises in scheduling is which end of a queue to add a job that just finished I/O; the -I flag changes this behavior for this scheduling simulator. Play around with some workloads and see if you can see the effect of this flag. 12 SCHEDULING: THE MULTI-LEVEL FEEDBACK QUEUE Homework (Simulation) This program, mlfq.py, allows you to see how the MLFQ scheduler presented in this chapter behaves. See the README for details. Questions 1. Run a few randomly-generated problems with just two jobs and two queues; compute the MLFQ execution trace for each. Make your life easier by limiting the length of each job and turning off I/Os. 2. How would you run the scheduler to reproduce each of the exam- ples in the chapter? 3. How would you configure the scheduler parameters to behave just like a round-robin scheduler? 4. Craft a workload with two jobs and scheduler parameters so that one job takes advantage of the older Rules 4a and 4b (turned on with the -s flag) to game the scheduler and obtain 99% of the CPU over a particular time interval. 5. Given a system with a quantum length of 10 ms in its highest queue, how often would you have to boost jobs back to the highest priority level (with the -B flag) in order to guarantee that a single long- running (and potentially-starving) job gets at least 5% of the CPU? 6. One question that arises in scheduling is which end of a queue to add a job that just finished I/O; the -I flag changes this behavior for this scheduling simulator. Play around with some workloads and see if you can see the effect of this flag. 12 SCHEDULING: THE MULTI-LEVEL FEEDBACK QUEUE Homework (Simulation) This program, mlfg.py, allows you to see how the MLFQ scheduler presented in this chapter behaves. See the README for details. Questions 1. Run a few randomly-generated problems with just two jobs and two queues; compute the MLFQ execution trace for each. Make your life easier by limiting the length of each job and turning off /Os. 2. How would you run the scheduler to reproduce each of the exam- ples in the chapter? 3. How would you configure the scheduler parameters to behave just like a round-robin scheduler? 4. Craft a workload with two jobs and scheduler parameters so that one job takes advantage of the older Rules 4a and 4b (turned on with the -s flag) to game the scheduler and obtain 99% of the CPU over a particular time interval. 5. Given a system with a quantum length of 10 ms in its highest queue, how often would you have to boost jobs back to the highest priority level (with the -B flag) in order to guarantee that a single long- running (and potentially-starving) job gets at least 5% of the CPU? 6. One question that arises in scheduling is which end of a queue to add a job that just finished I/O; the -I flag changes this behavior for this scheduling simulator. Play around with some workloads and see if you can see the effect of this flag. 12 SCHEDULING: THE MULTI-LEVEL FEEDBACK QUEUE Homework (Simulation) This program, mlfq.py, allows you to see how the MLFQ scheduler presented in this chapter behaves. See the README for details. Questions 1. Run a few randomly-generated problems with just two jobs and two queues; compute the MLFQ execution trace for each. Make your life easier by limiting the length of each job and turning off I/Os. 2. How would you run the scheduler to reproduce each of the exam- ples in the chapter? 3. How would you configure the scheduler parameters to behave just like a round-robin scheduler? 4. Craft a workload with two jobs and scheduler parameters so that one job takes advantage of the older Rules 4a and 4b (turned on with the -s flag) to game the scheduler and obtain 99% of the CPU over a particular time interval. 5. Given a system with a quantum length of 10 ms in its highest queue, how often would you have to boost jobs back to the highest priority level (with the -B flag) in order to guarantee that a single long- running (and potentially-starving) job gets at least 5% of the CPU? 6. One question that arises in scheduling is which end of a queue to add a job that just finished I/O; the -I flag changes this behavior for this scheduling simulator. Play around with some workloads and see if you can see the effect of this flag

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Database Design Application Development And Administration

Authors: Michael V. Mannino

3rd Edition

0071107010, 978-0071107013

More Books

Students also viewed these Databases questions

Question

Describe effectiveness of reading at night?

Answered: 1 week ago

Question

find all matrices A (a) A = 13 (b) A + A = 213

Answered: 1 week ago