Answered step by step
Verified Expert Solution
Question
1 Approved Answer
this question was solved using mathematica and I would like you to translate the code from mathematical to matlab. Thank you (INDETERMIKWIE BEAM) (+FLEXTATLITY METHOD.)
this question was solved using mathematica and I would like you to translate the code from mathematical to matlab. Thank you
(INDETERMIKWIE BEAM) (+FLEXTATLITY METHOD.) OC [Ceveral:spell] Clear(x1, x2, x3, x4] TTTT Horant of artis - 4.3x10+ 1 - 2x Analyze the given than Ekle th (+input constants) yn = 2.10; 1z - 4.5+10^-4 -1 = 1. /iz/ya c2-1. /iz/yo 3.1./12/y. 24-1. /is/yo (length of each segmente) 11 -3.57 L3-4 L4 - 3.5 (cuaties due to applied louden) 201 - 375. O2 - 375. (unction due to anat loads) ll--11.5/15 112 - - 3.5/15 2 AD the ty omab | 3 21 = -0.5 22-0.5 31 -3.5/15 232 -11.5/15. - 1.16686 [+unit load 2.) m21.-21.1 622 - 21 m23 - 121+x) + (x3 - 7.5) n24 = 21+4+ (x4-7.5) C -9.5x1 14 -3.28 C3.5 2 -1. C-3.839. CC 7.5 +0.5 x *** (Adamants de to applied loads) 001 - 2011 - 25. xxl 02 - 001 +*2-25. x2 + x2 nus = 01.-25. x3 x3 n04 - 2014 - 25. xdxd (unit lon 3) 1.31 - 31.1 32 - 3x2 33 - 31.3 0:34 - 231*4. (N-11.5) 0.233333 CA CM 378.-25. 212 C375. - 25. 122 - 2.23.933.33 138. - 25.232 C-11.1.3.766667x4 14 378.4-25.242 [wento dee to unit loads.) eunit load 1.) nii = 011.1 12 - Simplily 11.*2(2-3.5] n13 - Binp111111.3. (x3 -3.5) 14 - Simplify=112x4+ (x4-3.5] - 1.96661 Incompute the flexibility coefficients) (+11) inti-61.Tntegratel.nl!, (1, 2, 11) int2 - c2. Integrate.2012. (M2, L1, L1 L2) Int3 - 03.Integrate [13.013, (X3, L1 L2, L1 L2.L) inte Integrata 124 +14, (x4, 11 + 12 +1.3, 11-12 +1.8+4)] E11 - Simplifyinti + int2 int3+ int4 9.0000923359 3.00C22160 3.000262250 C-15-0.23333333 4,6455 C-3.5-0.933833x (22.) 4 HWW.AD the ty omab | 5 Inti - c1 Integrate (121n21. (x1, 2, L1] int2. 2. Integrato [122 -n22, (x2, 11, 11+12)] Int3-c3. Integrate [123 123. (X3, L1 L2, L1 L2 + L3) inte - Integrate-24-24, (0, 11+12 +13,1 + 1.2 + L3 L4)] E22 = Simplityinti + int2 + int inta C 3.00996991 CS 3.000 35C923 Inti - c1 Integrate 11.31. (X1, 2, Ll]] int2. Integrate[12.32, (x2, 11, 12] Int3-c3 Integrate [1333. (X3, L1 L2, L1 L2-L3)] inte - Integrate (*14.034, (x4, 11 + 12 + L3, L1 + 12 + L+ L4)] E13 - Simplifyinti int2 + int + inte C 3.000O2UCUS C 3.000221203 C 3.000 35002 C 3.0002200 C 3.000996993 Ca 3.00002UCU CI 3.0DUTU125 Ca 3.00U301223 la 33) i inti = 61. Integrata 3131, (1, 2, 11}] int2 = -2. Integrate [*32. 32, (x2, L1, Ll+L2) int3-c3 Integrate (13333. (X3, L1 L2, L1 L2-L3}] inte Integrass [*34.34, (x4, 11+12+L9, L1.12-L3-L4)] (33 - Simplifyintilot2.leta.lt 1.6455 x 10 G 3.1007642.3) (23) tinti-ci. Integrat (21.31. (1, 2, 1)! int2 = -2. Integrate (122 m32, (x2, L1, Ll+L2) int3-c3. Integrate [23 33. (X3, L1 L2, L1 L2-L3}] inte Integra 124 1234, (x4, 11+12+L9, L1 - 12 - L3 L4)] C23 - Simplifylltilat2 int3+ inte C 3.0000185252 C 3.000 6.2765 C 3.000261012 C 3.090221693 C 3.100923360 C 3.00040COL C 3.00006CR?!) C 3.01650775 ff12.) (101) mantic Integrats 11.021, (x1, 2, 11}] [3 Int2 - c2 + Integrate (112+n22, (x2, L1, L1 L2)] int3.63.Integrate (113n23, (*), 11 + 12, L1 + 12 + 1.3}] inte e Integrat (14. n24, (x4, 21+12+L9, L1.12-L3L4)] 12 - Simplifyintl + int2 + iets + int4 3.CDOGC7ID intia c1 Integrata (101.n11, (x1, 3, 11}] Int2 - c2 + Integrate [102 + 12. (x2, L1, L1 L2]] inti. Integrate (03.13, (x3, 1:1 +1.2, L1 + 12 +13}] inte = Integrata [3:04. n14, (x4, 1.1 +12 +L3, L1 - 1.2-L3-L4)] 201 - Simplifyintl.lat2 lata. iata 0.0376645 C 64 3.020264012 64 -2.2402.3 643.000018525 64-1.011 4.1 BY 3.020517175 1.243139 (13.) (02.) GHWW.AD thic ty mam ab 7 Compete 21 Inti - c1 Integrate [01.021, (x1, 2, L1] int2.. Integrato [102 n22, (x2, 11, 11+12)] Int3-c3. Integrate (03-023. (X3, L1 L2, L1 + 2 + L3) inte - Integrate (04n24, (*1,11 + 12 + L3, L1 + 2 + L3 L4)] E02 = Simpstylinti + int2 + int inte CAS 3.0245030 3.150 corporhei (1, 1)) --101; corputs [(2, 1) ) = -402; coopla(3,1]--03 MatrixFormoonpBQX5] 0.24113 5.306211 13, CAS 3.50542 CX-9.02360 CX-9.366213 Ends Linsersalre (copElha, coop ELE) CA 11210.05]. (196.DCC. [210.0531 2- xxl - reds[[1] xx2 Ende [12] XX3 - reda (3) (403) Tinti = 61.Integrata 01.31. (1, 2, 1.1)) int2 = -2. Integrate (2:02. 132, (x2, L1, Ll+L2) int3-c3 Integrate [0333. (X3, L1 L2, L1 L2-L3}] inte e Integrat (04.034, (x4, 1.1.2.3, 1.12-L3L4)) C03 - Simplifyintilot2.leta.lt C - 2.0114681 C C -3.090851 CAS 18.068) C#5 {196.004) CAST 1210. 062) CA - 2.2452.3 CS-3.0376645 (total moment function. - M01 ExpandimXX1 &11. XX2 + 1 + xx3.11 65.9299 xl 25. 11 CAT-3.247129 MO2-Expand (02-WX1.12.2.22 + x3321 35.29.270.998x2 20.22 01010 6 CompEQlh9 - 105 utola Orh[[1,1]] - 111; COOPEQ1h3[[1, 2]] - 12. ) conpElh[[1, 3) - 13: complh.(2, 1)) = 12 ceapplhaft2, 211-22 conpEQlhs[(2, ) - 2 cerptolha (3, 1)) - 13 compelh[(3, 2)) - 23 CORPEQlhs[[3, 3]) - 133; Mateixomorphs] 9.CDC ADC01: 0.DCC507176 0.000203225 5.080539196 0.10078125 0.003507176 0.00039:225 0.000507176 0.000400015 23 NO3- Expand [603 xx1.1 3+xx223+xx3 n33] 21-2209.21.173.002 - 23.4.2 + X8 004 - Expand [204. kl 14x2x24 + x334) 60-1521.03 $33.0 x1-25. x Hechty amab the Mb 9 - Plot 1401, xl, E, L1). Platstyle+ (RECOlor[1, 0, 0]. Tickness 0, 0.2]). Geidlines - Autantia, Prame + ["length-norber [x]", "Woment[XN..!"), Rotate Label + True] 01 - Plot [0404, [x4, L1 L2 + L3, L1 L2 L3 L4). Platstyle+ (RaColor(1, 0, 0], Tickness:0, 0.2]). Geidmines + Autantia, Prame + length aber [X]", "Moment (Nm"), Rotate Label + True] 190/19 18 1 Maximize [02. 1)] CAS44.7062, +1.93 - PlotIMMO2, (x2, L1, 11+12) PlatStyle+ (Racolor (1,0,0), Tickness 0, 0.2]). GeidLinas + Automatic, Prane["length Terber [x]" "Woment (Nm!"), Rotate Label + True] Saximize 02, 2) CA 92.0111, 1423.53985] Nexiaise O3, 3) CASE 2.0111, 1.20301} MALALIMU4, ) CAN11.2013, 0611} (afind the negative romant at point ce x3 - 7.5; N203 44 X-Plot 03, (x), LIL2, L1 L2 L3). Plotstyle (RGBColor(1, 0, 0), Tickness:0, 0.21). Grid Lines - Automatio, PERTA + { "length-ber N" "Morantk.), Rottelabel + Trun) 32- (INDETERMIKWIE BEAM) (+FLEXTATLITY METHOD.) OC [Ceveral:spell] Clear(x1, x2, x3, x4] TTTT Horant of artis - 4.3x10+ 1 - 2x Analyze the given than Ekle th (+input constants) yn = 2.10; 1z - 4.5+10^-4 -1 = 1. /iz/ya c2-1. /iz/yo 3.1./12/y. 24-1. /is/yo (length of each segmente) 11 -3.57 L3-4 L4 - 3.5 (cuaties due to applied louden) 201 - 375. O2 - 375. (unction due to anat loads) ll--11.5/15 112 - - 3.5/15 2 AD the ty omab | 3 21 = -0.5 22-0.5 31 -3.5/15 232 -11.5/15. - 1.16686 [+unit load 2.) m21.-21.1 622 - 21 m23 - 121+x) + (x3 - 7.5) n24 = 21+4+ (x4-7.5) C -9.5x1 14 -3.28 C3.5 2 -1. C-3.839. CC 7.5 +0.5 x *** (Adamants de to applied loads) 001 - 2011 - 25. xxl 02 - 001 +*2-25. x2 + x2 nus = 01.-25. x3 x3 n04 - 2014 - 25. xdxd (unit lon 3) 1.31 - 31.1 32 - 3x2 33 - 31.3 0:34 - 231*4. (N-11.5) 0.233333 CA CM 378.-25. 212 C375. - 25. 122 - 2.23.933.33 138. - 25.232 C-11.1.3.766667x4 14 378.4-25.242 [wento dee to unit loads.) eunit load 1.) nii = 011.1 12 - Simplily 11.*2(2-3.5] n13 - Binp111111.3. (x3 -3.5) 14 - Simplify=112x4+ (x4-3.5] - 1.96661 Incompute the flexibility coefficients) (+11) inti-61.Tntegratel.nl!, (1, 2, 11) int2 - c2. Integrate.2012. (M2, L1, L1 L2) Int3 - 03.Integrate [13.013, (X3, L1 L2, L1 L2.L) inte Integrata 124 +14, (x4, 11 + 12 +1.3, 11-12 +1.8+4)] E11 - Simplifyinti + int2 int3+ int4 9.0000923359 3.00C22160 3.000262250 C-15-0.23333333 4,6455 C-3.5-0.933833x (22.) 4 HWW.AD the ty omab | 5 Inti - c1 Integrate (121n21. (x1, 2, L1] int2. 2. Integrato [122 -n22, (x2, 11, 11+12)] Int3-c3. Integrate [123 123. (X3, L1 L2, L1 L2 + L3) inte - Integrate-24-24, (0, 11+12 +13,1 + 1.2 + L3 L4)] E22 = Simplityinti + int2 + int inta C 3.00996991 CS 3.000 35C923 Inti - c1 Integrate 11.31. (X1, 2, Ll]] int2. Integrate[12.32, (x2, 11, 12] Int3-c3 Integrate [1333. (X3, L1 L2, L1 L2-L3)] inte - Integrate (*14.034, (x4, 11 + 12 + L3, L1 + 12 + L+ L4)] E13 - Simplifyinti int2 + int + inte C 3.000O2UCUS C 3.000221203 C 3.000 35002 C 3.0002200 C 3.000996993 Ca 3.00002UCU CI 3.0DUTU125 Ca 3.00U301223 la 33) i inti = 61. Integrata 3131, (1, 2, 11}] int2 = -2. Integrate [*32. 32, (x2, L1, Ll+L2) int3-c3 Integrate (13333. (X3, L1 L2, L1 L2-L3}] inte Integrass [*34.34, (x4, 11+12+L9, L1.12-L3-L4)] (33 - Simplifyintilot2.leta.lt 1.6455 x 10 G 3.1007642.3) (23) tinti-ci. Integrat (21.31. (1, 2, 1)! int2 = -2. Integrate (122 m32, (x2, L1, Ll+L2) int3-c3. Integrate [23 33. (X3, L1 L2, L1 L2-L3}] inte Integra 124 1234, (x4, 11+12+L9, L1 - 12 - L3 L4)] C23 - Simplifylltilat2 int3+ inte C 3.0000185252 C 3.000 6.2765 C 3.000261012 C 3.090221693 C 3.100923360 C 3.00040COL C 3.00006CR?!) C 3.01650775 ff12.) (101) mantic Integrats 11.021, (x1, 2, 11}] [3 Int2 - c2 + Integrate (112+n22, (x2, L1, L1 L2)] int3.63.Integrate (113n23, (*), 11 + 12, L1 + 12 + 1.3}] inte e Integrat (14. n24, (x4, 21+12+L9, L1.12-L3L4)] 12 - Simplifyintl + int2 + iets + int4 3.CDOGC7ID intia c1 Integrata (101.n11, (x1, 3, 11}] Int2 - c2 + Integrate [102 + 12. (x2, L1, L1 L2]] inti. Integrate (03.13, (x3, 1:1 +1.2, L1 + 12 +13}] inte = Integrata [3:04. n14, (x4, 1.1 +12 +L3, L1 - 1.2-L3-L4)] 201 - Simplifyintl.lat2 lata. iata 0.0376645 C 64 3.020264012 64 -2.2402.3 643.000018525 64-1.011 4.1 BY 3.020517175 1.243139 (13.) (02.) GHWW.AD thic ty mam ab 7 Compete 21 Inti - c1 Integrate [01.021, (x1, 2, L1] int2.. Integrato [102 n22, (x2, 11, 11+12)] Int3-c3. Integrate (03-023. (X3, L1 L2, L1 + 2 + L3) inte - Integrate (04n24, (*1,11 + 12 + L3, L1 + 2 + L3 L4)] E02 = Simpstylinti + int2 + int inte CAS 3.0245030 3.150 corporhei (1, 1)) --101; corputs [(2, 1) ) = -402; coopla(3,1]--03 MatrixFormoonpBQX5] 0.24113 5.306211 13, CAS 3.50542 CX-9.02360 CX-9.366213 Ends Linsersalre (copElha, coop ELE) CA 11210.05]. (196.DCC. [210.0531 2- xxl - reds[[1] xx2 Ende [12] XX3 - reda (3) (403) Tinti = 61.Integrata 01.31. (1, 2, 1.1)) int2 = -2. Integrate (2:02. 132, (x2, L1, Ll+L2) int3-c3 Integrate [0333. (X3, L1 L2, L1 L2-L3}] inte e Integrat (04.034, (x4, 1.1.2.3, 1.12-L3L4)) C03 - Simplifyintilot2.leta.lt C - 2.0114681 C C -3.090851 CAS 18.068) C#5 {196.004) CAST 1210. 062) CA - 2.2452.3 CS-3.0376645 (total moment function. - M01 ExpandimXX1 &11. XX2 + 1 + xx3.11 65.9299 xl 25. 11 CAT-3.247129 MO2-Expand (02-WX1.12.2.22 + x3321 35.29.270.998x2 20.22 01010 6 CompEQlh9 - 105 utola Orh[[1,1]] - 111; COOPEQ1h3[[1, 2]] - 12. ) conpElh[[1, 3) - 13: complh.(2, 1)) = 12 ceapplhaft2, 211-22 conpEQlhs[(2, ) - 2 cerptolha (3, 1)) - 13 compelh[(3, 2)) - 23 CORPEQlhs[[3, 3]) - 133; Mateixomorphs] 9.CDC ADC01: 0.DCC507176 0.000203225 5.080539196 0.10078125 0.003507176 0.00039:225 0.000507176 0.000400015 23 NO3- Expand [603 xx1.1 3+xx223+xx3 n33] 21-2209.21.173.002 - 23.4.2 + X8 004 - Expand [204. kl 14x2x24 + x334) 60-1521.03 $33.0 x1-25. x Hechty amab the Mb 9 - Plot 1401, xl, E, L1). Platstyle+ (RECOlor[1, 0, 0]. Tickness 0, 0.2]). Geidlines - Autantia, Prame + ["length-norber [x]", "Woment[XN..!"), Rotate Label + True] 01 - Plot [0404, [x4, L1 L2 + L3, L1 L2 L3 L4). Platstyle+ (RaColor(1, 0, 0], Tickness:0, 0.2]). Geidmines + Autantia, Prame + length aber [X]", "Moment (Nm"), Rotate Label + True] 190/19 18 1 Maximize [02. 1)] CAS44.7062, +1.93 - PlotIMMO2, (x2, L1, 11+12) PlatStyle+ (Racolor (1,0,0), Tickness 0, 0.2]). GeidLinas + Automatic, Prane["length Terber [x]" "Woment (Nm!"), Rotate Label + True] Saximize 02, 2) CA 92.0111, 1423.53985] Nexiaise O3, 3) CASE 2.0111, 1.20301} MALALIMU4, ) CAN11.2013, 0611} (afind the negative romant at point ce x3 - 7.5; N203 44 X-Plot 03, (x), LIL2, L1 L2 L3). Plotstyle (RGBColor(1, 0, 0), Tickness:0, 0.21). Grid Lines - Automatio, PERTA + { "length-ber N" "Morantk.), Rottelabel + Trun) 32Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started