Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Required information Use the following Information for the Quick Study below. [The following information applies to the questions displayed below.) Peng Company is considering an

image text in transcribed
image text in transcribed
image text in transcribed
image text in transcribed
Required information Use the following Information for the Quick Study below. [The following information applies to the questions displayed below.) Peng Company is considering an investment expected to generate an average net income after taxes of $2,700 for three years. The investment costs $52,500 and has an estimated $7,200 salvage value. QS 25-8 Net present value LO P3 Assume Peng requires a 10% return on its investments. Compute the net present value of this investment. Assume the company uses straight-line depreciation. (PV of $1. FV of $1. PVA of $1, and FVA of $1) (Use appropriate factor(s) from the tables provided. Negative amounts should be indicated by a minus sign.) Amount PV Factor Cash Flow Select Chart Annual cash flow Residual value Present Value $ 0 Net present value p=1/(1+y TABLE B.1" Present Value of Rate 9% 4% 7% 10% 15% 5% 12% 1% 2% Periods 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 30 35 40 0.9901 09803 0.9706 0.9610 0.9515 0.9420 0.9327 0.9235 0.9143 0905) 0.8963 0.8874 0.8787 0.8700 0.8613 0.8528 0.8444 0.8300 0.8277 0.8195 0.7798 0.7419 0.7059 0.6717 09804 0.9612 0.9423 0.9238 0.9057 08880 0.8706 0.8535 0.8368 0.8203 0.8043 0.788 0.7730 0.7579 0.7490 0.7284 0.7142 0.7002 0.6864 0.6730 0.6095 0.5521 0.5000 0.4529 0.9709 0.9426 0.9151 0.8885 0.8626 0.8375 0.8131 0.7894 0.7654 0.7441 0.7224 0.7014 0.6810 0.0611 0.5419 0.6232 0.6050 0.5874 0.5703 0.5537 0.4776 0.4120 0.3554 0.3066 0.9615 0.9246 0.8890 0.8548 0.8219 0.7903 0.7599 0.7307 0.7026 0.6756 0.6496 0.6240 0.6006 0.5775 0.5553 0.5339 05134 0.4936 0.4746 0.4564 0.3751 0.3083 0.2534 0.2083 0.9524 0.9070 0.8638 0.8227 0.7835 0.7462 0.7107 0.6768 0.010.46 06139 0,5847 0.5568 0.5303 0.5051 0.4810 0.458 0.4353 0.4155 0.3957 0.3769 0.2953 0.2314 0.1813 0.1420 0.9434 0.8900 0.8396 0.7921 0.7472 0.7050 0.6651 0.6274 0.5919 0.5584 0.5268 0.4970 0.4688 0.8423 0.4173 0.3936 0.3714 0.3503 0.3305 0.3118 0.2330 0.1741 0.1301 0.0972 0.9346 0.8734 0.8163 0.7629 0.7130 0.6663 0.6227 0.5820 05439 0.5083 0.4751 0.4440 0.4150 0.3878 0.3624 0.3382 0.3166 0.2959 0.2765 0.2584 0.1842 0.1314 0.0937 0.0668 0.9259 0.8573 0.7938 0.7350 0.6806 0.6302 0.5835 05403 05002 0.4632 0.4289 0.3971 0.3677 0.3405 0.3152 0.2919 0.2703 0.2502 0.2317 0.2145 0.1460 0.0994 0.0676 0.0460 09174 0.8417 0.7722 0.7084 0.6499 0.5963 0.5470 0.5019 0.4604 0.4224 0.3875 0.3555 0.3262 0.2992 0.2745 0.2519 0.2311 0.2120 0.1945 0.1784 0.1160 0.0754 0.0490 0.0318 0.9091 0.8264 0.7513 0 6830 0.6209 0.5645 0.5132 0.4665 0.4241 0.3855 0.3505 0.3186 0.2897 0.2633 0.2394 0.2176 0.1978 0.1799 0.1635 0.1486 0.0923 0.0573 0,0356 0.0221 0.8929 0.7972 0.7118 0.6355 0.5674 0.5056 0.4523 0.4039 0.3606 0.3220 0.2875 0.2567 0.2292 0.2046 0.1827 0.1631 0.1456 0.1300 0.1161 0.1037 0.0588 0.0334 0.0189 0.0107 0.8690 0.7561 0.6575 0.5718 0.4972 0.4323 03759 0.3269 0.2843 0,2472 02149 0.1809 0.1625 0.1413 0.1229 0.1069 0.0929 0.0808 0.0703 00611 0.0304 0.0151 0.0075 0.0037 *Used to compute the present value of a known future anunt. For example: How much would you need to invest today at 10compounded semiannually to accumulate 35.000 in 6 yean 2 semantul periods and sem of the fact 0.356. You would need to invest $2.714 today (55.000 x 0.3568) TABLE B.2 f = (1 + i)" Future Value of 1 Rate 3% 5% 1% 2% 6% 7% Periods 8% 9% 10% 12% 15% 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 30 35 40 1.0000 1.0100 1.0201 1.0303 1.0406 1.0510 1.0615 1.0721 1.0829 1.0937 1.1046 1.1157 1.1268 1.1381 1.1495 1.1610 1.1726 1.1843 1.1961 1.2081 1.2202 1.2824 1.3478 1.4166 1.4889 1.0000 1.0200 1,0404 1.0612 1.0824 1.1041 1.1262 1.1487 1.1717 1.1951 1.2190 1.2434 1.2682 1.2936 1.3195 1.3459 1.3728 1.4002 1.4282 1.4568 1.4859 1.6406 1.8114 1.9999 2.2080 1.0000 1.0300 1.0609 1.0927 1.1255 1.1593 1.1941 1.2299 1.2668 1.3048 1.3439 1.3842 1.4258 1.4685 1.5126 1.5580 1.6047 1.6528 1.7024 1.7535 1.8061 2.0938 2.4273 2.8139 3.2620 1.0000 1.0400 1.0816 1.1249 1.1699 1.2167 1.2653 1.3159 1.3686 1.4233 1.4802 1.5395 1.6010 1.6651 1.7317 1.8009 1.8730 1.9479 2.0258 2.1068 2.1911 26658 3.2434 3.9461 4.8010 1.0000 1.0500 1.1025 1.1576 1.2155 1.2763 1.3401 1.4071 1.4775 1.5513 1.6289 1.7103 1.7959 1.8856 1.9799 2.0789 2.1829 2.2920 2.4066 2.5270 2.6533 3.3864 4.3219 5.5160 7.0400 1.0000 1.0600 1.1236 1.1910 1.2625 1.3382 1.4185 1.5036 1.5938 1.5895 1.7908 1.8983 2.0122 2.1329 2.2609 2.3966 2.5404 2.6928 2.8543 3.0256 3.2071 4.2919 5.7435 7.6861 10.2857 1.0000 1,0700 1.1449 1.2250 1.3108 1.4026 1.5007 1.6058 1.7182 1.8385 1.9672 2 1049 2.2522 2.4098 2,5785 2.7590 2.9522 3.1588 3.3799 3,6165 3.8697 5.4274 7.6123 10.6766 14.9745 1.0000 1.0800 1.1664 1.2597 1.3605 1.4693 1.5869 1.7138 1.8509 1.9990 2.1589 2.3316 2.5182 2.7196 2.9372 3.1722 3.4259 3.7000 3.9960 4.3157 4.6610 6.8485 10.0627 14.7853 21.7245 1.0000 1.0900 1.1881 1.2950 1.4116 1.5386 1.6771 1.8280 1.9926 2.1719 2.3674 2.5804 2.8127 3.0658 3.3417 3.6425 3.9703 4.3276 4.7171 5.1417 5,6044 8.6231 13.2677 20.4140 31.4094 1.0000 1.1000 1.2100 1.3310 1.4641 1.6105 1.7716 1.9487 2.1436 2.3579 2.5937 2.8531 3.1384 3.4523 3.7975 4.1772 4.5950 5.0545 5.5599 6.1159 6.7275 10.8347 17.4494 28.1024 45.2593 1.0000 1.1200 1.2544 1.4049 1.5735 1.7623 1.9738 2.2107 2.4760 2.7731 3.1058 3.4785 3.8960 4.3635 4,8871 5.4736 6.1304 6.8660 7.6900 8.6128 9.6463 17.0001 29.9599 52.7996 93.0510 1.0000 1.1500 1.3225 1.5209 1.7490 2.0114 2 3131 2.6600 3.0590 3.5179 4.0456 4.6524 5.3503 6.1528 7.0757 8.1371 9.3576 10.7613 12.3755 14.2318 16.3665 32.9190 66.2118 133,1755 267.8635 Used to compute the future value of a known present amount. For example: What is the accumulated value of 1.000 invested today at compounded quarterly for 5 years? Using the factors of 30 and 1= 2520 quarterly periods and a quarterly interest rate of 25).the factor is 14859. The secumulated value is 54457.70(53.000 x 14859) f=[(1 + i)" - 1yi TABLE B.40 Future Value of an Annuity of 1 Rate Periods 2% 3% 5% 6% 7% 9% 10% 12% 15% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 30 35 1.0000 2.0100 3.0301 4.0604 5.1010 6.1520 7.2135 8.2857 9.3685 10.4622 11.5668 12.6825 13.8093 14.9474 16.0969 17.2579 18.4304 19.6147 20.8109 22.0190 28.2432 34.7849 41.6603 48.8864 1.0000 20200 3.0604 4,1216 5.2040 6.3081 7.4343 8.5830 9.7546 10.9497 12.1687 13.4121 14.6803 15.9739 17.2934 18.6393 20.0121 21.4123 22.8406 24.2974 320303 40.5681 49.9945 60.4020 1.0000 2.0300 3.0909 4.1836 5.3091 6.4684 7.6625 8.8923 10.1591 11.4639 12.8078 14.1920 15.6178 17.0863 18.5989 20.1569 21.7616 23.4144 25.1169 26.8704 36.4593 47.5754 60.4621 75.4013 1.0000 1.0000 2.0400 2.0500 3.1216 3.1525 4.2465 4.3101 5.4163 5.5256 6.6330 6.8019 7.8983 8.1420 9.2142 9.5491 10.5828 11.0266 12.0061 12.5779 13.4864 14.2068 15.0258 15.9171 16.6268 17.7130 18.2919 19.5986 20.0236 21.5786 21.8245 23.6575 23.6975 25.8404 25.6454 28.1324 27.6712 30.5390 29.7781 33.0660 41.6459 47.7271 56.0849 66.4388 73.6522 90.3203 95.0255 120.7998 1.0000 2.0600 3.1836 4.3746 5.6371 6.9753 8.3938 9.8975 11.4913 13.1808 14.9716 16.8699 18.8821 21.0151 23.2760 25.6725 28.2129 30.9057 33.7600 36.7856 54.8645 79.0582 111.4348 154.7620 1.0000 2.0700 3.2149 4.4399 5.7507 7.1533 8.6540 10.2598 11.9780 13.8164 15.7836 17.8885 20.1406 22.5505 25.1290 27.8881 30.8402 33.9990 37.3790 40.9955 63.2490 94.4608 138.2369 199.6351 1.0000 20800 3.2464 4.5061 5.8666 7.3359 8.9228 10.6366 12.4876 14.4866 16.6455 18.9771 21.4953 24.2149 27.1521 30.3243 33.7502 37.4502 41.4463 45.7620 73.1059 113.2832 172.3168 259.0565 1.0000 2.0900 3.2781 4.5731 5.9847 7.5233 9.2004 11.0285 13.0210 15.1929 17.5603 20.1407 22.9534 26.0192 29.3609 33.0034 36.9737 41.3013 46.0185 51.1601 84.7009 136.3075 215.7108 337.8824 1.0000 2.1000 3,3100 4.6410 6.1051 7.7156 9.4872 11.4359 13.5795 15.9374 18.5312 21.3843 24.5227 27.9750 31.7725 35.9497 40.5447 45.5992 51.1591 57.2750 98.3471 164.4940 271.0244 4425926 1.0000 2.1200 3.3744 4.7793 6.3528 8. 1152 10.0890 12.2997 14.7757 17.5487 20.6546 24.1331 28.0291 32.3926 37.2797 42.7533 48.8837 55.7497 63.4397 72.0524 133.3339 241.3327 431.6639 767.0914 1.0000 2.1500 3.4725 4.9934 6.7424 8.7537 11.0668 13.7268 16.7858 20.3037 24.3493 29.0017 34.3519 40.5047 47.5804 55.7175 65.0751 75.8364 88.2118 102.4436 212.7930 434.7451 881.1702 1.779.0903 Used to calculate the future value of a series of equal payments made at the end of each period. For example: What is the future value of $4.000 per year for 6 years assuming an nnual interest rate of 8%. For in=6, 1 = 8), the FV factor is 7.3359. 54,000 per year for 6 years accumulates to $29.343.60 ($4,000 X 7.3359)

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Capital Market Instruments Analysis And Valuation

Authors: M. Choudhry, D. Joannas, G. Landuyt, R. Pereira, R. Pienaar

3rd Edition

0230576036, 9780230576032

More Books

Students also viewed these Accounting questions

Question

What are the attributes of a technical decision?

Answered: 1 week ago