Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

***USE STATA*** *** All Data to answer the question are are provided *** 1-please provide screenshots from STATA where/when necessary 2- please provide a clear

***USE STATA***

***All Data to answer the question are are provided ***

1-please provide screenshots from STATA where/when necessary

2- please provide a clear answer on each step as stipulated by the question

************************

Question: This lab is an exercise in specification: choosing the variables and the functional form. It also gives you experience in transforming and manipulating variables and conducting joint hypothesis tests in Stata. The dependent variable we will study is the price of a used farm tractor sold at auction in the United States.

Table 2.1 Variable Definitions for the Used Tractor Price Model

Variable Description Hypoth. Sign of Coef.
salepricei price paid for the tractor i in dollars n/a
Tractor Specifications:
horsepoweri horsepower of the tractor i engine +
agei number of years since tractor i was manufactured -
enghoursi number of hours of use recorded on tractor i -
dieseli a dummy variable = 1 if tractor i runs on diesel fuel, 0 otherwise +
fwdi a dummy variable = 1 if tractor i has four-wheel drive, 0 otherwise +
manuali a dummy variable = 1 if tractor i transmission is manual, 0 otherwise -
johndeerei a dummy variable = 1 if tractor i is manufactured by John Deere, 0 otherwise +
cabi a dummy variable = 1 if tractor i has an enclosed cab, 0 otherwise +
Time of year:
springi a dummy variable = 1 if tractor i sold in April or May, 0 otherwise ?
summeri a dummy variable = 1 if tractor i sold June-September, 0 otherwise ?
winteri a dummy variable = 1 if tractor i sold December-March, 0 otherwise ?

Step 1: Estimate the Basic Model

As our basic model, let's estimate a variation of Diekmann's model using a more current dataset. Table 2.1 contains the definitions of the variables we'll need to attempt to replicate Diekmann's regression. The dependent variable is the price of a used farm tractor that was sold at auction in the United States between June 1, 2011 and May 31, 2012. The data are available in the file TRACTOR. Table 2.1 (below step 7) also has the hypothesized expected sign of the coefficient of each variable, given the underlying theory. Now:

a. Estimate an equation with the natural log of the sale price (saleprice) as the dependent variable using all of the independent variables in Table 2.1 except for cab. (Hints: Don't forget to generate lnsaleprice before you run your regression and make sure not to includecab as an independent variable.)

b. Take a look at your regression results. What is R^2 ? Does this seem reasonable? Explain your thinking.

c. Does any of your estimated coefficients have unexpected signs? If so, which ones?

d. Testthe coefficients of all your independent variables except for the seasonal dummies at the 5 percent significance level. For which coefficients can you reject the null hypothesis?

e. Carefully interpret the coefficient of John Deere. What does it mean in real-world terms?

f. What econometric problems (if any) appear to exist in the basic model?

Step 2: Consider a Polynomial Functional Form for Horsepower

Suppose you show the results of your basic model to a used tractor dealer who happened to take econometrics in college. He says that your results are promising, but he's found it very difficult to sell overpowered used tractors because these tractors waste fuel and provide no extra benefit to the buyer. He thinks that new tractor buyers don't make this mistake as often. He therefore suggests that it could be that as horsepower increases, the price increases, at least up to a point, but beyond that point, further increases in horsepower start to have a negative effect on price. You decide to take his advice and consider changing the functional form of horsepower to a polynomial.

a. Generate the new variable and run the new regression. Hypothesize the signs of the coefficients of horsepower and its square before you run the regression.

b. Run 5-percent t-tests on your hypotheses for the coefficients of horsepower and its square.

c. At what horsepower (to the nearest round number) does the value of a tractor reach an extreme (other things being equal)? Is the extreme a minimum or a maximum?

d. Which equation do you prefer between the basic equation and the polynomial equation? Why? (Be sure to cite evidence to support your choice.)

Step 3: Add a Potential Omitted Variable to Your Step 3 Model

As you're leaving the used tractor lot, you happen to notice that quite a few of the tractors have enclosed cabs. Since such a cab would come in handy in bad weather, you have a sudden sinking feeling that you might have an omitted variable! To test this, you find the data for cab (also in TRACTOR). Now:

a. Add cab to the model you preferred in Step 3, part d, and re-estimate the equation.

b. Use our four specification criteria to decide whether cab belongs in the equation. (Hint: Write out specific answers for all four criteria and then justify your conclusion.)

Step 4: Joint Hypothesis Testing

Go back to the basic model of Step 2, and test at the 5-percent level the joint hypothesis that the time of year of the sale has no effect on the price of the tractors:

a. What is the omitted condition in this seasonal model?

b. Carefully write out your null and alternative hypotheses.

c. Estimate your constrained equation (that is, without the seasonal dummies)

d. Run the appropriate F-test at the 5-percent level. Calculate F and look up the appropriate critical F-value.

e. What's your conclusion? Do used tractor prices have a seasonal pattern?

Step 5: Consider a Slope Dummy That Interacts Diesel with Use

It is well known that diesel engines tend to be more durable than gasoline engines. That fact raises the question of whether an additional hour of use affects the value of a diesel tractor differently than for a gasoline tractor. Generate the variable you need to test that hypothesis, add this variable to the basic model of Step 2, estimate the revised slope dummy model, and test the appropriate slope dummy hypothesis at the 5-percent level. What is your t-value? Can you reject the null hypothesis?

Step 6: Interpreting Coefficients in Different Specifications

Replace age in the Step 4 model with the natural log of age. Refer to this specification as S1.

a. State the precise meaning of the coefficient on lnage.

b. What is the effect of an additional 1 hour of use on the price of a used tractor?

Step 7: Excluding a Variable

How does the coefficient on lnage in the S1 specification change if you run it without enghours? Why does this happen? Explain. Does this violate a classical assumption? How do you know? Briefly explain.

***Data from TRACTOR.xls***

saleprice horsepower age enghours diesel fwd manual johndeere cab spring summer winter
200000 491 2 1148 1 1 1 1 1 1 0 0
183500 270 3 467 1 1 1 1 1 0 0 0
162500 215 5 1511 1 1 1 1 1 0 0 0
135000 205 2 128 1 1 0 0 1 0 0 1
122100 235 2 1620 1 1 0 0 1 1 0 0
120000 510 7 5038 1 1 1 0 1 0 1 0
117500 333 5 2825 1 1 1 0 1 0 0 1
110000 275 4 1360 1 1 1 0 1 1 0 0
109000 221 6 1003 1 1 0 0 1 0 0 0
105000 275 4 1227 1 1 1 0 1 1 0 0
101250 221 4 1250 1 1 1 0 1 0 0 1
96000 215 7 2221 1 1 0 0 1 0 0 0
95000 535 5 7297 1 1 1 0 1 0 0 1
74600 180 8 4257 1 1 0 0 1 0 0 0
65600 225 18 5624 1 1 1 1 1 1 0 0
58600 190 7 2699 1 1 1 0 1 0 0 1
48700 350 18 4985 1 1 1 1 1 0 0 1
48000 240 9 7056 1 1 1 0 1 1 0 0
47000 105 5 1650 1 1 1 1 1 0 0 0
46000 100 6 2872 1 1 0 0 1 0 1 0
45500 350 19 6131 1 1 1 0 1 0 0 0
45000 105 5 513 1 1 0 0 1 1 0 0
43100 145 17 3800 1 1 1 0 1 0 0 0
42750 187 29 3918 1 1 1 0 1 1 0 0
42500 95 5 460 1 1 0 0 1 0 0 0
42400 225 15 7595 1 1 1 0 1 0 0 0
41700 210 19 4990 1 1 0 0 1 0 0 0
41700 125 7 391 1 1 0 0 1 0 1 0
41100 210 18 7300 1 0 1 0 1 0 1 0
41100 95 5 300 1 1 1 0 1 1 0 0
39800 235 14 7750 1 1 1 0 1 1 0 0
37200 175 9 6390 1 1 1 0 1 0 1 0
36900 210 18 9224 1 1 0 0 1 1 0 0
36500 100 8 3517 1 1 0 0 1 0 1 0
36100 105 4 784 1 1 1 0 0 0 0 0
36000 95 5 2417 1 1 0 0 1 0 0 1
35600 215 18 6849 1 1 1 0 1 0 1 0
35100 78 4 78 1 1 0 0 1 0 0 1
35000 93 7 636 1 1 1 0 1 1 0 0
34400 150 17 9000 1 1 1 1 1 0 0 1
34400 85 16 1251 1 1 1 1 0 0 0 1
33900 91 6 26 1 1 0 0 1 0 0 0
33000 300 18 8975 1 1 1 1 1 0 1 0
33000 81 5 430 1 1 1 1 1 0 0 0
33000 80 5 271 1 0 0 0 1 0 0 1
32600 68 4 85 1 1 1 0 1 0 0 1
32500 95 7 2757 1 0 0 0 1 0 0 0
32000 65 4 410 1 1 0 0 1 1 0 0
31500 99 4 325 1 1 1 0 1 1 0 0
30100 360 18 8230 1 1 1 0 1 1 0 0
28800 99 17 4512 1 1 1 1 1 1 0 0
28400 200 25 2595 1 1 1 0 1 1 0 0
28200 110 13 4497 1 1 1 0 1 1 0 0
27900 85 8 1400 1 0 0 0 1 0 0 1
27500 120 11 721 1 1 0 0 1 0 0 0
27100 335 25 11685 1 1 1 0 1 0 0 0
27000 180 30 6400 1 0 1 0 1 0 0 1
27000 98 3 178 1 1 1 0 0 1 0 0
25100 95 5 2360 1 1 1 0 1 1 0 0
25100 90 6 1757 1 1 1 0 1 1 0 0
24800 325 23 9067 1 1 1 0 1 1 0 0
24250 150 14 9037 1 1 1 0 1 1 0 0
24100 50 4 9 1 1 1 0 0 0 1 0
23750 145 18 7194 1 1 1 0 1 0 0 0
22800 96 21 1010 1 1 1 0 1 1 0 0
22500 95 20 5439 1 0 1 0 1 0 0 0
22000 50 8 689 1 1 1 0 1 1 0 0
21100 97 27 5350 1 1 1 0 1 0 1 0
21000 95 8 680 1 1 0 0 1 1 0 0
20900 62 5 399 1 1 0 0 0 0 1 0
20700 133 28 3042 1 1 1 0 1 0 0 0
20100 130 17 9467 1 1 0 0 1 1 0 0
20000 106 21 4769 1 1 1 0 1 0 0 1
19500 98 24 2670 1 1 1 0 1 0 0 1
19500 94 23 9573 1 1 1 0 1 0 0 0
19400 105 10 3924 1 1 0 0 1 0 1 0
19100 335 25 7200 1 1 1 0 1 0 1 0
18700 78 6 1145 1 0 0 0 1 0 0 1
18600 100 23 13869 1 1 1 0 1 0 0 0
18500 90 19 9008 1 1 1 0 1 0 1 0
18250 105 7 1935 1 1 1 0 1 0 1 0
18000 90 17 5020 1 1 1 0 1 0 0 0
18000 75 11 3900 1 0 1 0 1 0 1 0
18000 65 2 5 1 1 1 0 0 0 0 0
17700 86 23 4914 1 1 1 0 1 0 0 0
17500 325 21 9392 1 1 1 0 1 1 0 0
17500 154 26 5400 1 0 1 0 1 0 0 1
17500 52 5 673 1 1 1 0 1 0 1 0
17250 108 22 6300 1 1 1 0 1 0 0 0
17250 75 4 350 1 0 1 1 0 0 0 0
17100 116 28 3458 1 1 1 0 1 1 0 0
17100 90 22 5922 1 1 0 0 1 0 0 0
17000 138 31 6441 1 0 1 0 1 1 0 0
17000 105 11 105 1 1 1 0 1 0 0 0
16750 100 21 8837 1 1 1 0 1 0 1 0
16600 100 22 7811 1 0 1 0 1 0 0 0
16500 86 23 8452 1 1 1 0 1 0 0 0
16300 140 22 5316 1 0 1 0 1 1 0 0
16100 105 23 1800 1 0 1 0 1 0 1 0
16100 87 24 6559 1 0 1 0 1 1 0 0
16000 90 9 2582 1 1 1 0 0 0 0 0
16000 52 8 293 1 1 1 0 1 0 1 0
15900 70 3 243 1 0 0 0 0 0 0 0
15700 85 28 3736 1 0 1 1 1 0 0 1
15200 50 4 10 1 1 1 0 0 0 0 1
15100 105 32 6424 1 0 1 0 1 0 1 0
15100 47 8 2500 1 1 1 0 1 0 1 0
15000 90 9 90 1 1 1 0 1 0 0 0
15000 52 13 710 1 1 1 0 1 0 0 0
14900 74 13 2484 1 0 1 0 1 0 1 0
14800 90 16 1540 1 1 1 0 1 0 0 0
14750 90 12 6337 1 1 1 0 1 0 0 0
14100 73 12 1586 1 1 0 0 1 0 0 0
14000 355 18 17543 1 1 1 0 1 0 1 0
14000 230 32 4380 1 1 1 0 1 1 0 0
14000 105 7 2452 1 1 1 0 0 0 0 0
14000 32 6 931 1 1 1 0 0 0 0 1
13900 108 22 5796 1 1 1 0 1 0 0 0
13750 131 33 4122 1 0 1 0 1 0 0 0
13500 205 2 128 1 1 1 0 1 0 0 1
13500 100 27 5200 1 0 1 0 1 0 1 0
13500 82 27 5100 1 0 1 0 1 1 0 0
13500 48 7 270 1 1 1 0 0 0 1 0
13500 29 5 395 1 1 1 0 0 0 0 0
13250 76 5 2220 1 0 0 0 0 0 0 0
13000 54 6 948 1 1 1 0 0 0 0 0
13000 30 15 850 1 1 1 0 0 0 0 1
12700 48 5 1176 1 1 1 0 1 0 0 0
12600 76 5 2379 1 0 0 0 0 0 0 0
12600 70 7 3500 1 1 1 0 1 1 0 0
12500 45 5 727 1 1 0 0 0 1 0 0
12500 42 13 3805 1 1 1 0 1 0 0 0
12400 35 5 304 1 1 1 0 0 1 0 0
12300 45 6 165 1 0 0 0 0 0 0 1
12100 136 30 5148 1 0 1 0 1 0 1 0
12100 41 17 1785 1 1 1 0 0 0 1 0
12000 80 14 7622 1 0 1 0 1 1 0 0
12000 75 14 3000 1 0 1 0 0 0 0 1
12000 45 3 22 1 0 1 1 0 0 0 1
11600 29 9 29 0 1 0 0 0 0 0 0
11500 55 10 291 1 1 1 0 1 0 0 0
11400 30 7 208 0 0 0 0 0 0 0 0
11250 75 9 755 1 0 0 0 0 0 0 0
11000 90 16 17020 1 1 1 0 1 0 0 0
11000 80 7 1625 1 0 1 0 0 0 1 0
10800 27 4 63 1 1 1 1 0 0 0 0
10700 35 11 1388 1 1 0 0 0 0 1 0
10600 165 31 6155 1 0 1 0 1 0 1 0
10600 163 31 9438 1 0 1 0 1 1 0 0
10600 23 6 1301 1 1 0 0 0 1 0 0
10500 50 11 1722 1 1 0 0 0 1 0 0
10500 28 11 732 1 1 0 1 0 0 0 1
10500 24 11 1392 0 1 0 0 0 0 0 1
10250 46 17 1021 1 0 1 0 1 0 1 0
10100 52 4 20 0 0 0 0 0 0 0 1
10000 100 19 3091 1 1 1 0 0 0 1 0
10000 98 26 2785 1 1 1 0 1 0 0 0
10000 90 7 209 1 0 1 0 1 0 0 0
10000 85 27 3800 1 0 1 1 0 1 0 0
10000 80 11 2964 1 1 1 0 1 0 1 0
10000 75 12 3730 1 0 1 0 1 0 0 0
10000 72 13 1347 0 0 0 0 0 0 0 1
10000 62 10 608 1 0 1 0 1 0 1 0
10000 44 10 4484 0 1 0 1 0 0 1 0
10000 21 7 883 1 0 0 0 0 0 0 0
9900 85 24 8604 1 0 1 1 0 0 0 0
9800 66 21 3772 1 0 0 0 1 0 0 0
9800 26 4 56 1 1 0 0 0 0 0 0
9750 52 7 2350 1 1 0 0 0 0 1 0
9600 85 25 6228 1 0 0 0 0 0 0 0
9600 52 4 27 1 0 0 0 0 0 0 0
9600 48 4 48 1 0 0 0 0 0 0 1
9500 85 15 3477 1 0 1 0 0 1 0 0
9500 21 18 259 1 1 1 0 0 0 0 0
9300 187 31 4788 1 0 1 0 1 0 0 0
9200 140 32 4690 1 0 1 0 1 0 0 1
9200 88 24 5870 1 0 1 1 0 0 1 0
9200 75 27 9001 1 0 1 1 0 0 0 0
9100 150 32 12370 1 0 1 0 1 0 1 0
9100 120 22 4300 1 0 1 1 0 0 1 0
9100 50 24 1391 1 1 1 0 0 0 0 0
9100 48 5 228 0 0 0 0 0 0 1 0
9100 25 12 1031 1 1 0 0 0 0 0 0
9000 163 30 9042 1 0 1 0 1 0 0 0
9000 58 8 888 1 0 1 0 0 1 0 0
9000 52 11 633 1 1 1 0 0 0 1 0
9000 46 6 171 1 1 1 0 0 1 0 0
9000 32 4 55 1 1 0 0 0 0 0 0
9000 28 3 1 1 1 0 0 0 0 1 0
8800 90 22 9470 1 0 1 0 1 0 0 0
8800 50 7 203 0 0 0 1 0 0 0 0
8700 45 11 128 1 0 1 0 0 1 0 0
8600 130 33 8975 1 0 1 0 1 0 0 0
8600 76 19 4500 1 0 0 0 0 1 0 0
8600 21 11 557 1 1 0 0 0 0 1 0
8500 52 7 2019 1 1 1 0 0 0 1 0
8100 90 32 6600 1 0 1 0 1 0 0 0
8000 80 6 2348 1 1 0 0 0 0 1 0
8000 66 18 1157 1 0 1 0 1 0 0 0
8000 62 12 1489 1 0 1 0 1 0 0 0
8000 35 16 1290 1 1 0 0 0 0 0 0
8000 33 6 2348 1 1 0 0 0 0 1 0
8000 27 9 807 1 1 1 1 0 0 0 1
7900 111 33 9264 1 0 1 1 1 1 0 0
7900 75 16 9320 1 1 1 1 1 1 0 0
7900 44 18 1275 1 0 1 0 0 0 0 0
7800 162 30 8486 1 1 1 0 1 0 0 0
7600 25 12 981 1 1 0 0 0 0 1 0
7550 26 12 916 1 1 0 1 0 1 0 0
7500 40 11 273 1 1 1 0 0 0 0 0
7500 28 7 970 1 1 0 0 0 0 0 0
7400 217 29 7500 1 0 1 0 1 0 0 0
7400 95 17 3900 1 0 1 0 0 0 1 0
7400 28 15 1370 1 0 0 0 0 0 0 0
7300 105 33 6453 1 0 1 0 1 0 0 1
7300 99 22 18744 1 0 1 0 1 0 0 1
7300 72 23 4527 1 0 1 0 0 0 1 0
7000 162 31 6170 1 0 1 0 1 0 0 0
7000 44 10 681 1 1 1 0 0 0 0 0
7000 22 7 159 1 1 0 0 0 0 1 0
6750 24 4 140 1 1 0 0 0 0 1 0
6700 45 11 750 1 0 0 0 0 0 1 0
6600 50 33 4647 1 0 1 1 0 1 0 0
6500 62 28 1201 1 0 1 0 0 0 1 0
6500 33 11 1409 1 1 1 0 0 1 0 0
6400 217 27 5716 1 0 1 0 1 1 0 0
6400 85 29 5336 1 1 1 1 0 0 1 0
6300 195 33 3955 1 0 1 0 1 0 1 0
6200 27 12 1712 0 1 1 1 0 0 0 1
6100 61 30 2457 1 0 1 0 0 0 0 0
6100 53 27 550 1 0 1 0 0 0 1 0
6000 52 30 5125 1 0 1 0 0 0 0 1
6000 20 15 578 0 0 0 0 0 0 0 1
5600 122 33 5521 1 0 1 0 1 0 1 0
5600 27 29 938 0 0 0 0 0 0 0 0
5500 65 32 877 1 0 1 0 0 0 0 0
5500 33 33 1681 1 0 1 1 1 0 0 0
5400 20 15 3939 0 1 1 1 0 0 0 1
5300 38 15 1493 1 0 0 0 0 0 1 0
5250 90 31 6859 1 0 1 0 1 1 0 0
5100 86 33 9479 1 0 1 0 1 1 0 0
5100 41 27 609 0 0 1 0 0 0 1 0
5000 80 5 300 1 1 1 0 1 0 0 1
5000 48 5 286 1 1 1 0 0 1 0 0
5000 32 23 4028 1 1 1 0 0 1 0 0
4800 45 11 2860 0 0 0 0 0 0 0 0
4700 122 33 5188 1 0 1 0 1 0 0 1
4700 26 13 1257 0 0 0 1 0 0 0 0
4600 16 27 1310 0 0 0 1 0 0 0 1
4500 60 23 4617 0 0 0 0 0 0 0 0
4500 27 20 2376 1 0 1 0 0 0 0 0
4250 45 26 3084 1 0 1 0 0 0 1 0
4250 38 17 713 1 0 1 0 0 0 0 0
4200 30 5 757 1 0 1 0 0 0 0 1
4100 64 31 3750 1 0 1 0 0 0 0 1
4000 55 21 8283 1 0 1 0 0 0 0 0
4000 50 33 9872 0 0 1 1 0 0 0 0
3800 51 21 8332 1 0 1 0 0 0 0 0
3800 20 20 2227 1 1 0 0 0 1 0 0
3750 70 32 10734 0 0 0 1 0 0 1 0
3500 65 30 4078 1 0 1 0 0 0 0 1
3500 56 27 7200 1 0 1 0 0 0 0 0
3500 45 29 2319 1 0 1 0 0 0 0 1
3300 28 30 3530 1 0 0 1 0 0 0 0
3000 63 31 9543 1 0 1 0 0 0 0 1
3000 61 26 6483 1 0 1 0 0 0 0 0
3000 36 28 2277 0 1 1 0 0 0 0 0
3000 22 28 10611 0 0 0 1 0 1 0 0
3000 19 10 1737 0 0 0 0 0 1 0 0
2800 22 33 1228 1 0 1 1 0 0 0 0
2600 47 14 1350 1 0 1 0 0 1 0 0
2250 24 28 1390 0 0 0 0 0 0 1 0
1750 55 18 5325 1 0 1 0 0 0 1 0
1650 25 33 1140 0 0 0 0 0 0 0 0
1600 18 25 3351 0 0 0 0 0 1 0 0
1500 32 19 6833 1 0 1 0 0 0 0 0

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Business Its Legal Ethical and Global Environment

Authors: Marianne M. Jennings

11th edition

1337103578, 978-1337514392, 133751439X, 978-0357690130, 978-1337103572

More Books

Students also viewed these Economics questions

Question

=+What kind of design would this be? Diagram the experiment.

Answered: 1 week ago

Question

Context, i.e. the context of the information presented and received

Answered: 1 week ago