Use the ERR method to evaluate the economic worth of the diagram shown below. The value of the external reinvestment rate, , is 9% per year. The MARR =11% per year. Click the icon to view the diagram for cash flows. Click the icon to view the interest and annuity table for discrete compounding when the MARR is 9% per year. Click the icon to view the interest and annuity table for discrete compounding when the MARR is 11% per year. The ERR of the investment discussed is \%. (Round to one decimal place.) \begin{tabular}{|c|c|c|c|c|c|c|} \hline \multicolumn{7}{|c|}{ Discrete Compounding; i=9%} \\ \hline & \multicolumn{2}{|c|}{ Single Payment } & \multicolumn{4}{|c|}{ Uniform Series } \\ \hline & \begin{tabular}{l} Compound \\ Amount \\ Factor \end{tabular} & \begin{tabular}{c} Present \\ Worth Factor \end{tabular} & \begin{tabular}{l} Compound \\ Amount \\ Factor \end{tabular} & \begin{tabular}{c} Present \\ Worth Factor \end{tabular} & \begin{tabular}{l} Sinking \\ Fund \\ Factor \end{tabular} & \begin{tabular}{c} Capital \\ Recovery \\ Factor \end{tabular} \\ \hline N & \begin{tabular}{c} To Find F \\ Given P \\ F/P \end{tabular} & \begin{tabular}{c} To Find P \\ Given F \\ P/F \end{tabular} & \begin{tabular}{c} To Find F \\ Given A \\ F/A \end{tabular} & \begin{tabular}{c} To Find P \\ Given A \\ PIA \\ \end{tabular} & \begin{tabular}{c} To Find A \\ Given F \\ A/F \end{tabular} & \begin{tabular}{l} To Find A \\ Given P \\ A/P \end{tabular} \\ \hline 1 & 1.0900 & 0.9174 & 1.0000 & 0.9174 & 1.0000 & $0900 \\ \hline 2 & 1.1881 & 0.8417 & 2.0900 & 1.7591 & 0.4785 & 0.5685 \\ \hline 3 & 1.2950 & 0.7722 & 3.2781 & 2.5313 & 0.3051 & 0.3951 \\ \hline 4 & 1.4116 & 0.7084 & 4.5731 & 3.2397 & 0.2187 & 0.3087 \\ \hline 5 & 1.5386 & 0.6499 & 5.9847 & 3.8897 & 0.1671 & 0.2571 \\ \hline 6 & 1.6771 & 0.5963 & 7.5233 & 4.4859 & 0.1329 & 0.2229 \\ \hline 7 & 1.8280 & 0.5470 & 9.2004 & 5.0330 & 0.1087 & 0.1987 \\ \hline 8 & 1.9926 & 0.5019 & 11.0285 & 5.5348 & 0.0907 & 0.1807 \\ \hline 9 & 2.1719 & 0.4604 & 13.0210 & 5.9952 & 0.0768 & 0.1668 \\ \hline 10 & 2.3674 & 0.4224 & 15.1929 & 6.4177 & 0.0658 & 0.1558 \\ \hline \end{tabular} \begin{tabular}{|c|c|c|c|c|c|c|} \hline \multicolumn{7}{|c|}{ Discrete Compounding; i=11%} \\ \hline & \multicolumn{2}{|c|}{ Single Payment } & \multicolumn{4}{|c|}{ Uniform Series } \\ \hline & \begin{tabular}{l} Compound \\ Amount \\ Factor \end{tabular} & \begin{tabular}{c} Present \\ Worth Factor \end{tabular} & \begin{tabular}{c} Compound \\ Amount \\ Factor \end{tabular} & \begin{tabular}{c} Present \\ Worth Factor \end{tabular} & \begin{tabular}{l} Sinking \\ Fund \\ Factor \end{tabular} & \begin{tabular}{c} Capital \\ Recovery \\ Factor \end{tabular} \\ \hline N & \begin{tabular}{c} To Find F \\ Given P \\ F/P \end{tabular} & \begin{tabular}{c} To Find P \\ Given F \\ P/F \end{tabular} & \begin{tabular}{c} To Find F \\ Given A \\ F/A \end{tabular} & \begin{tabular}{c} To Find P \\ Given A \\ P/A \end{tabular} & \begin{tabular}{c} To Find A \\ Given F \\ A/F \end{tabular} & \begin{tabular}{c} To Find A \\ Given P \\ A/P \end{tabular} \\ \hline 1 & 1.1100 & 0.9009 & 1.0000 & 0.9009 & 1.0000 & 1.1100 \\ \hline 2 & 1.2321 & 0.8116 & 2.1100 & 1.7125 & 0.4739 & 0.5839 \\ \hline 3 & 1.3676 & 0.7312 & 3.3421 & 2.4437 & 0.2992 & 0.4092 \\ \hline 4 & 1.5181 & 0.6587 & 4.7097 & 3.1024 & 0.2123 & 0.3223 \\ \hline 5 & 1.6851 & 0.5935 & 6.2278 & 3.6959 & 0.1606 & 0.2706 \\ \hline 6 & 1.8704 & 0.5346 & 7.9129 & 4.2305 & 0.1264 & 0.2364 \\ \hline 7 & 2.0762 & 0.4817 & 9.7833 & 4.7122 & 0.1022 & 0.2122 \\ \hline 8 & 2.3045 & 0.4339 & 11.8594 & 5.1461 & 0.0843 & 0.1943 \\ \hline 9 & 2.5580 & 0.3909 & 14.1640 & 5.5370 & 0.0706 & 0.1806 \\ \hline 10 & 2.8394 & 0.3522 & 16.7220 & 5.8892 & 0.0598 & 0.1698 \\ \hline \end{tabular}