Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

using LinearAlgebra, Zygote, ForwardDiff, Printf using CSV , DataFrames using StatsBase: mean using Parameters using Distributions using Random using BSON ### Below you will implement

using LinearAlgebra, Zygote, ForwardDiff, Printf
using CSV, DataFrames
using StatsBase: mean
using Parameters
using Distributions
using Random
using BSON
### Below you will implement your linear regression object from scratch.
###
### you will also imply some penalty methods as well.
#### ----- ###
#### Before getting started you should write your student_number in integer format
const student_number::Int64=0 ## <---replace 0 by your student_number
### ---- ###
### This hw is a bit harder than the usual ones, so you may want to
### take a look at --Julia official website
### Before you get started, --- you gotta look at do end syntax of Julia
### Instead of mean square loss we shall use Huber loss which
### sometimes performs better when your dataset contains some out of distribution points
### We split it into two parts the first one is for scalars the second one is for vectors
### remember that you will multiple dispatch!!!
function huber_loss(y_pred::T, y_true::T; \delta ::Float64=0.1) where T <: Real
return nothing
end
function huber_loss(y_pred::AbstractArray{T}, y_true::AbstractArray{T}) where T <: Real
return nothing
end
function unit_test_huber_loss()::Bool
Random.seed!(0)
@assert huber_loss(1.0,1.0)==0.0
@assert huber_loss(1.0,2.0; \delta =0.9)==0.49500000000000005
@assert isapprox(huber_loss(randn(100,100),randn(100,100)),0.10791842, atol =1e-2)
@assert isapprox(huber_loss(randn(100),randn(100)),0.107945, atol =1e-2)
@info "You can not stop now comrade!!! jump to the next exercise!!!"
return 1
end
## See you have implemented huber_loss() well??
unit_test_huber_loss()
### create a roof for the logistic regression LogisticClassifier
abstract type LinearRegression end
mutable struct linear_regression <: LinearRegression
## This part is given to you!!!
## Realize that we have fields: \theta and bias.
\theta ::AbstractVector
bias::Real
linear_regression(n::Int64)= new(0.004*randn(n), zero(1))
end
### write the forwardpass function
function (lr::linear_regression)(X::Matrix{T}) where T<:Real
## This dude is the forward pass function!!!
return nothing
end
function unit_test_forward_pass()::Bool
try
linear_regression(20)(randn(10,20))
catch ERROR
error("SEG-FAULT!!!!")
end
@info "Real test started!!!!"
for i in ProgressBar(1:10000)
sleep(0.0001)
lr = linear_regression(3)
x = randn(2,3)
@assert lr(x)== x*lr.\theta .+ lr.bias
end
@info "Oki doki!!!"
return 1
end
### Let's give a try!!!!!!
unit_test_forward_pass()
## we shall now implement fit! method!!!
## before we get ready run the next 5 lines to see in this setting grad function returns a dictionary:
#=
lr = linear_regression(10)
val, grad = Zygote.withgradient(lr) do lr
norm(lr.\theta )^2+ lr.bias^2
end
=#
function update_grads!(lr::LinearRegression, learning_rate::Float64, grads)
## Here you will implement update_grads, this function returns nothing.
## Search for setfield! and getfield functions.
## x -= learning_rate*grads will happen here!!!
return nothing
end
function fit!(lr::linear_regression,
X::AbstractMatrix,
y::AbstractVector;
learning_rate::Float64=0.00001,
max_iter::Integer =5,
\lambda ::Float64=0.01)
##
return nothing
end
## Let's give a try!!!
lr = linear_regression(20)
X = randn(100,20)
y = randn(100)
fit!(lr, X, y; learning_rate =0.00001, max_iter =10000)
### Things seem to work fine!!!
function unit_test_for_fit()
Random.seed!(0)
lr = linear_regression(20)
X = randn(100,20)
y = randn(100)
fit!(lr, X, y; learning_rate =0.0001, max_iter =10000,\lambda =0.1)
@assert norm(lr.\theta )^2+ lr.bias^2<0.01 "Your penalty method does not work!!!"
@assert mean((lr(X)- y).^2)<1.3"Yo do not fit perfectly!!!!"
@info "Okito dokito buddy!!!"
return 1
end
## Run next line to see what happens??? ##
unit_test_for_fit()
## -- ##

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Fundamentals Of Database Management Systems

Authors: Mark L. Gillenson

3rd Edition

978-1119907466

More Books

Students also viewed these Databases questions

Question

What is the Lagrangian description of fluid motion?

Answered: 1 week ago