Using the American term quotes from Exhibit 57. calculate a cross-rate matrix for the euro. Swiss franc, Japanese yen, and British pound so that the resulting triangular matrix is similar to the portion above the diagonal in Exhibit 5.8 . (Round your answers to 5 decimal places.) \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|} \hline \multirow[t]{2}{*}{ EXHIBIT 5.8} & \multicolumn{5}{|c|}{ Key Cross-Currency Rates } & \multirow[b]{2}{*}{ CAD } & \multirow[b]{2}{*}{ AUD } & \multirow[b]{2}{*}{ NZO } & \multirow[b]{2}{*}{ HKD } & \multirow[b]{2}{*}{ NOK } & \multirow[b]{2}{*}{ SEK } \\ \hline & USD & EUR & JPY & GBP & CHF & & & & & & \\ \hline Swedish krona & 92695 & 10.412 & .08314 & 12.197 & 9.2859 & 6.9459 & 6.5930 & 6.2833 & 1.1809 & 1.0813 & \\ \hline Norwegian krone & 8.5728 & 9.6296 & .07689 & 11.281 & 8.5880 & 6.4238 & 6.0974 & 5.8110 & 1.0922 & - & .92484 \\ \hline Hong Kong dollar & 7.8494 & 8.8169 & .07040 & 10.329 & 7.8632 & 5.8817 & 5.5829 & 5.3206 & - & .91561 & 84679 \\ \hline New Zealand dollar & 1.4753 & 1.6571 & .01323 & 1.9412 & 1.4779 & 1.1055 & 1.0493 & - & .18795 & .17209 & .15915 \\ \hline Australian dollar & 1.4060 & 1.5793 & .01261 & 1.8501 & 1.4085 & 1.0535 & & .95303 & 17912 & .16400 & .15168 \\ \hline Canadian dollar & 1.3345 & 1.4990 & 01197 & 1.7560 & 1,3369 & - & 94918 & .90460 & .17002 & .15567 & .14397 \\ \hline Swiss franc & .99823 & 1.1213 & .00895 & 1.3135 & - & .74800 & .70999 & .67665 & .12717 & .11644 & .10769 \\ \hline British pound & .75997 & .85365 & .00682 & - & .76131 & 56946 & 54053 & 51514 & .09682 & .08865 & .08199 \\ \hline fapanese yen & 111.49 & 125.23 & - & 146.70 & 111.69 & 83.542 & 79.297 & 75572 & 14.204 & 13.005 & 12.028 \\ \hline Euro & 89026 & - & .00799 & 1.1714 & .89183 & .66709 & .63320 & .60345 & .11342 & .10385 & .09604 \\ \hline U.S. dollar & & 1.1233 & .00897 & 1.3158 & 1.0018 & .74933 & .71125 & .67784 & .12740 & 11665 & 10788 \\ \hline \end{tabular}