Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

W(1) = [w1, w2, w3, w4, w5, w6] = [W7, W8, w9] W(2) [w1, w2, w3,w4, w5, w6] [W7, W8, w9] = Sigmoid (Z)

image text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribed

W(1) = [w1, w2, w3, w4, w5, w6] = [W7, W8, w9] W(2) [w1, w2, w3,w4, w5, w6] [W7, W8, w9] = Sigmoid (Z) Z=WT.X x1 W1 W7 x2 Input W9 W6 Output m 1 Error = m (Y; log( ;() + (1 - Y;)log (1 ;)] i=1 = 0: 5,0: 3,0:1, 0:05, 0:01 #23 -*- coding: utf-8 -*- # Assignment 2 # %% #23 Import required libararies import pandas as pd import numpy as np import scipy.special as sps # %% %23 Load data data = pd.read_csv('./data.csv') #23 covert dataframe to a numpy array data = np.array(data) #23 Input and output array X = data[:,:3] Y = data[:,3] #23 Initialize W. w = np.random.rand (3,) # Maximum number of iterations. max iter = 500 # define an error vector to save all error values over all iterations. error all = [ ] %23 Learning rate for gradient descent. eta = 0.5 #23 % % for iter in range (0, max_iter): Y hat = sps.expit (np.dot (X,w)) Compute the error below e 0 # Add this error to the end of error vector. # Gradient of the error = np.mean (np.multiply ((Y_hat Y), X.T), axis=1) grad_e w old = W W = W eta*grad_e print ('epoch (0:d), negative log-likelihood (1:.4f}, w={2}'.format(iter, e, w.T)) #23 % % # %23 %23 Plot error over iterations # X1 X2 4.87708 3.3077 1 6.29141 1.9718 1 5.23725 1.78808 1 5.87772 1.54805 1 6.57164 1.64352 1 4.39512 0.377521 1 O o O ooo 0 0 0 0 0 0 1.9346 -0.96441 1 0 5.79882 0.55621 1 0 2.71304 -0.95809 1 5.8401 0.71409 1 0 5.63386 0.448146 1 0 5.53636 2.99068 1 0 4.23068 0.020339 1 0 5.0816 0.183366 1 0 5.1552 1.1312 1 0 3.57477 -0.03439 1 0 4.50342 1.40246 1 0 6.39004 -1.51277 1 0 3.18431 -1.13677 1 0 7.10329 2.08823 1 0 5.26819 1.33738 1 0 5.66199 0.658664 1 0 6.49652 0.099152 1 0 3.45561 -2.21304 1 0 4.91517 2.10681 1 0 8.43576 2.93878 1 0 4.23147 1.3911 1 0 3.72672 -0.67339 1 4.70626 2.16434 1 0 4.25716 0.059306 1 0 4.22951 2.56752 1 0 5.82389 0.584974 1 5.61207 2.6482 1 0 4.00863 1.26945 1 0 3.48903 0.875659 1 0 6.68761 0.882557 1 0 6.65803 2.37183 1 3.19428 -0.0584 1 0 7.92116 3.55478 1 0 2.00277 -0.85992 1 1.63639 -3.26628 1 4.30995 2.55213 1 3.81584 0.142354 1 5.60707 2.41231 1 7.21626 2.87172 1 5.0215 1.33231 1 O o O o O o O 0 0 0 0 0 0 3.63406 0.42292 1 1.85637 -2.45424 1 5.87612 -0.32513 1 6.08557 1.66645 1 7.15541 1.04826 1 4.71966 0.925561 1 ooo ooo 0 0 0 0 3.77426 -0.00709 1 0 2.2795 0.15955 1 5.95627 0.619953 1 0 4.37587 2.25958 1 0 7.15078 3.12013 1 0 5.68533 -0.1409 1 0 4.14621 -0.17207 1 0 7.29926 3.18122 1 0 6.65995 1.11722 1 0 4.81433 1.79302 1 0 3.18518 0.023388 1 0 5.7304 5.96065 0.988353 -0.4332 1 0 1 0 4.63729 1.00734 4.21293 1 0 -0.495 1 0 6.821 3.11544 1 0 1.22634 -1.81171 1 0 5.83087 0.868184 1 5.84522 1.59523 1 3.20411 -0.87566 1 0 5.182 -0.95604 1 0 7.01564 1.00211 1 0 3.75126 1.67203 1 0 4.32044 2.03612 1 0 5.84578 1.28981 1 0 4.31732 0.2286 1 0 5.75119 0.480062 1 0 6.63863 1.31929 1 4.10019 0.767416 1 0 4.17129 -0.43329 1 0 4.08494 -0.16525 1 0 6.25737 2.70203 1 0 3.17821 -0.80572 1 0 5.23409 1.44152 1 0 3.77828 1.00464 3.78564 -1.81254 2.7482 -0.72157 4.66551 1.11505 1 1 1 1 7.56391 2.79803 1 6.53123 1.10983 1 7.01468 0.62075 1 O o O o O o O 0 0 0 0 0 3.08282 -0.47222 1 4.24092 -0.5903 1 4.50131 1.04061 1 5.41479 -1.05045 1 5.77109 -0.00326 1 o O o O o 0 0 0 0 6.7386 1.50557 1 0 6.03543 -0.00294 1 0 6.0143 0.096112 1 1 5.8483 -0.56707 1 1 9.1268 0.467921 1 1 6.50287 -0.32254 1 1 8.34785 -1.86196 1 1 8.7138 0.03187 1 1 7.48294 1.12607 1 1 5.32267 -0.06793 1 1 7.84906 0.173599 1 1 6.8107 0.340388 1 1 4.86189 -1.58112 1 1 7.81038 0.124991 1 1 5.69757 -2.66749 1 1 4.98258 -0.98596 1 1 7.29419 0.329265 1 1 5.30702 -0.53896 1 1 5.92084 -2.84293 1 1 6.67875 -0.31466 1 1 7.15065 -0.87198 1 1 7.05615 -0.65183 1 1 4.13707 -2.0626 1 1 9.23212 0.509982 1 1 6.42773 -2.29232 1 1 8.78533 -0.13043 1 1 5.81837 -1.4589 1 1 6.65273 0.634411 1 1 7.93596 -1.0498 1 1 5.31858 -0.76284 1 1 7.05392 -1.36317 1 1 4.87798 -1.59669 1 1 8.66012 1.09077 1 1 8.62422 1.31756 1 1 7.15783 0.591584 1 1 4.24049 -0.75785 1 1 7.51612 0.608586 1 1 8.05742 -1.0202 1 1 6.68742 -2.10663 1 1 6.48144 -0.58966 1 1 6.38024 -1.07908 1 1 6.57595 -0.8524 1 1 6.74217 0.405755 1 1 6.15184 -0.16589 1 1 5.87049 -0.0589 1 1 4.29903 -3.02396 1 1 6.31209 0.047785 1 1 6.8361 -0.86709 1 1 8.18026 0.392979 1 1 6.2743 -0.74506 1 1 7.56094 0.434863 1 1 6.76859 -1.29152 1 1 6.97468 -0.31525 1 1 6.78058 -0.80716 1 1 8.02122 1.64475 1 1 7.96289 0.690926 1 1 7.60384 -0.22106 1 1 4.79771 -1.87768 1 1 6.55515 -0.4466 1 1 3.31992 -1.92802 1 1 7.01145 -1.43609 1 1 8.32306 -0.83016 1 1 5.40471 -0.6547 1 1 5.36874 -1.05525 1 1 5.73118 0.217932 1 1 6.76585 1.1135 1 1 8.11251 0.978824 1 1 7.87284 0.285546 1 1 5.99627 -2.05124 1 1 8.14964 0.153367 1 1 5.76497 -0.51806 1 1 7.93855 2.00346 1 1 6.94061 -0.20413 1 1 5.62752 -0.37169 1 1 5.41718 -0.94306 1 1 6.87414 0.424736 1 1 3.93405 -2.89285 1 1 7.36817 -1.55564 1 1 6.99046 -1.73922 1 1 6.9594 -0.51321 1 1 7.55692 0.13305 1 1 9.95654 1.01262 1 1 7.61134 -0.98747 1 1 7.08595 -0.74341 6.84536 -1.83609 1 1 1 1 5.89508 -0.1925 1 1 6.07663 -1.15907 1 1 8.65917 -0.71532 1 1 7.71035 0.86847 1 1 6.47888 0.123053 1 1 6.40483 -0.35782 1 1 6.64506 -1.35758 1 1 6.70686 -1.00543 1 1 5.91611 -1.94202 1 1 5.23408 0.212685 1 1 9.17872 8.4101 1.24917 1.55816 1 1 1 1 6.29127 -0.55161 1 1 5.02663 -1.89957 1 1 6.34552 -1.49894 1 1 6.34255 -2.8653 1 1 6.67919 1.78889 1 1

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Numerical Analysis

Authors: Richard L. Burden, J. Douglas Faires

9th edition

538733519, 978-1133169338, 1133169333, 978-0538733519

More Books

Students also viewed these Mathematics questions

Question

What is the significance of the liquidus curve? Solidus curve?

Answered: 1 week ago