Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

When running the code below I am getting these errors. Any help fixing it would be appreciated. import numpy as np import tensorflow as tf

When running the code below I am getting these errors. Any help fixing it would be appreciated.

image text in transcribed

import numpy as np

import tensorflow as tf

import matplotlib.pyplot as plt

tf.compat.v1.disable_eager_execution()

#1) Generate the synthetic data using the following Python code snippet.

# Generate synthetic data

N = 100

# Zeros form a Gaussian centered at (-1, -1)

x_zeros = np.random.multivariate_normal(mean=np.array((-1, -1)), cov=.1*np.eye(2), size=(N//2,))

y_zeros = np.zeros((N//2,))

# Ones form a Gaussian centered at (1, 1)

x_ones = np.random.multivariate_normal(mean=np.array((1, 1)), cov=.1*np.eye(2), size=(N//2,))

y_ones = np.ones((N//2,))

x_np = np.vstack([x_zeros, x_ones])

y_np = np.concatenate([y_zeros, y_ones])

# Plot x_zeros and x_ones on the same graph

plt.scatter(x_zeros[:,0], x_zeros[:,1], label='class 0')

plt.scatter(x_ones[:,0], x_ones[:,1], label='class 1')

plt.legend()

plt.show()

#3) Generate a TensorFlow graph.

with tf.name_scope("placeholders"):

x = tf.compat.v1.placeholder(tf.float32, (N, 2))

y = tf.compat.v1.placeholder(tf.float32, (N,))

with tf.name_scope("weights"):

W = tf.Variable(tf.random.normal((2, 1)))

b = tf.Variable(tf.random.normal((1,)))

with tf.name_scope("prediction"):

y_logit = tf.squeeze(tf.matmul(x, W) + b)

# the sigmoid gives the class probability of 1

y_one_prob = tf.sigmoid(y_logit)

# Rounding P(y=1) will give the correct prediction.

y_pred = tf.round(y_one_prob)

with tf.name_scope("loss"):

# Compute the cross-entropy term for each datapoint

entropy = tf.nn.sigmoid_cross_entropy_with_logits(logits=y_logit, labels=y)

# Sum all contributions

l = tf.reduce_sum(entropy)

with tf.name_scope("optim"):

train_op = tf.compat.v1.train.AdamOptimizer(.01).minimize(l)

with tf.name_scope("summaries"):

tf.compat.v1.summary.scalar("loss", l)

merged = tf.compat.v1.summary.merge_all()

train_writer = tf.compat.v1.summary.FileWriter('logistic-train', tf.compat.v1.get_default_graph())

#4) Train the model, get the weights, and make predictions.

with tf.compat.v1.Session() as sess:

sess.run(tf.compat.v1.global_variables_initializer())

# Train model

for i in range(1000):

_, summary, loss = sess.run([train_op, merged, l], {x: x_np, y: y_np})

train_writer.add_summary(summary, i)

# Get weights and bias

w_final, b_final = sess.run([W, b])

# Make predictions

y_pred_np = sess.run(y_pred, {x: x_np})

train_writer.close()

#5) Plot the predicted outputs on top of the data.

x_min, x_max = x_np[:, 0].min() - .5, x_np[:, 0].max() + .5

y_min, y_max = x_np[:, 1].min() - .5, x_np[:, 1].max() + .5

xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100),

np.linspace(y_min, y_max, 100))

X_grid = np.c_[xx.ravel(), yy.ravel()]

with tf.compat.v1.Session() as sess:

y_grid = sess.run(y_one_prob, {x: X_grid})

plt.contourf(xx, yy, y_grid.reshape(xx.shape), cmap=plt.cm.Paired)

plt.scatter(x_np[y_np == 0, 0], x_np[y_np == 0, 1], c="red")

plt.scatter(x_np[y_np == 1, 0], x_np[y_np == 1, 1], c="blue")

plt.show()

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Database Design And SQL For DB2

Authors: James Cooper

1st Edition

1583473572, 978-1583473573

More Books

Students also viewed these Databases questions