A fluid, whose viscosity is to be measured, is placed in the gap of thickness B between the two disks of radius R. One
A fluid, whose viscosity is to be measured, is placed in the gap of thickness B between the two disks of radius R. One measures the torque T; required to turn the upper disk at an angular velocity 2. Develop the formula for deducing the viscosity from these measurements. Assume creeping flow. (20 points) (a) Postulate that for small values of Q the velocity profiles have the form v, = 0, vz = 0, and vo = rf(z); why does this form for the tangential velocity seem reasonable? Postulate further that P= P(r, z). Write down the resulting simplified equations of continuity and motion. Disk at z-B rotates with angular velocity n Fluid with viscosity u and density p is held in place by surface tension Disk at z-0 is fixed Both disks have radius R and R>> B Fig, 3B.5. Parallel-disk viscometer. (b) From the 0-component of the equation of motion, obtain a differential equation for f(z). Solve the equation for f(z) and evaluate the constants of integration. This leads ultimately to the result ve = Or(z/B). Could you have guessed this result? (c) Show that the desired working equation for deducing the viscosity is u = 2BT/rQR*
Step by Step Solution
3.40 Rating (144 Votes )
There are 3 Steps involved in it
Step: 1
Solution Part a A cylindrical coordinate system will be used for this problem We assume that the fluid flows only in the direction and that the velocity varies as a function of r and z v vr z If is sm...See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started