Question
Write a recurrence relation describing the worst case running time of the following algorithm and determine the asymptotic complexity of the function defined by the
Write a recurrence relation describing the worst case running time of the following algorithm and determine the asymptotic complexity of the function defined by the recurrence relation. Justify your solution using substitution/expansion. You may not use the Master Theorem as justification of your answer. Simplify and express your answer as theta(n^k) or theta(n^k log_2 n) whenever possible. If the algorithm is exponential just give exponential lower bounds.
function func(A, n)
if n < 5 then return A(1)
else
for i = 1 to n
for j = i to n-1
A (j) leftarrow A (j) + A (i) + 3
/* endfor */
/* endfor */
y leftarrow func(A, n-5)
return (y)
The recurrence relation for this algoritm is: T(n) = cn^2 + T(n-5)
How is this calculated?
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started