Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

write codes on Rstudio using the table and the below; Table 3 presents the correlation results for key customer service attributes. Table 3: Correlation Matrix

write codes on Rstudio using the table and the below;

Table 3 presents the correlation results for key customer service attributes.

Table 3: Correlation Matrix of Customer Feedback Keywords

Quality

Service

Price

Selection

Cleanliness

Atmosphere

Convenience

Location

Staff

Wait Time

Quality

1.00

0.45

-0.23

0.57

0.38

0.32

0.24

0.15

0.18

-0.05

Service

0.45

1.00

0.12

0.65

0.51

0.46

0.39

0.28

0.62

0.21

Price

-0.23

0.12

1.00

-0.35

-0.26

-0.15

-0.20

-0.31

-0.08

0.13

Selection

0.57

0.65

-0.35

1.00

0.43

0.38

0.31

0.12

0.23

-0.10

Cleanliness

0.38

0.51

-0.26

0.43

1.00

0.49

0.36

0.21

0.29

-0.05

Atmosphere

0.32

0.46

-0.15

0.38

0.49

1.00

0.27

0.18

0.25

-0.08

Convenience

0.24

0.39

-0.20

0.31

0.36

0.27

1.00

0.34

0.21

-0.15

Location

0.15

0.28

-0.09

0.22

0.15

0.18

0.30

1.00

0.18

-0.13

Staff

0.18

0.62

-0.08

0.23

0.29

0.25

0.21

0.18

1.00

0.12

Wait Time

-0.05

0.21

0.13

-0.10

-0.05

-0.08

-0.15

-0.13

0.12

1.00

Source: Customer Survey Analysis (2023)

Note: The values in the table represent the Pearson correlation coefficient between the corresponding pairs of feedback keywords.

# Perform sentiment analysissentiment <- inner_join(as.data.frame(dtm), customer_data, by = c("row.names" = "feedback"))sentiment <- sentiment[, c("row.names", "SentimentScore")]

# Perform topic modelinglda <- LDA(dtm, k = 5) # Adjust the number of topics (k) as needed

# Extract topics from the modeltopics <- tidy(lda, matrix = "beta")topics <- topics %>% group_by(topic) %>% top_n(10, beta) %>% ungroup()

# Perform entity extractionentities <- corpus %>% unnest_tokens("entity", input = text) %>% anti_join(stop_words)

# Save the resultswrite.csv(sentiment, "sentiment_analysis_results.csv", row.names = FALSE)write.csv(topics, "topic_modeling_results.csv", row.names = FALSE)write.csv(entities, "entity_extraction_results.csv", row.names = FALSE)

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Modern Dental Assisting

Authors: Doni Bird, Debbie Robinson

13th Edition

978-0323624855, 0323624855

Students also viewed these Programming questions