Question
Write this code in parallel please with explenation step by step import numpy as np import mnist from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D,
Write this code in parallel please with explenation step by step
import numpy as np
import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten
from tensorflow.keras.utils import to_categorical
train_images = mnist.train_images()
train_labels = mnist.train_labels()
test_images = mnist.test_images()
test_labels = mnist.test_labels()
Normalize the images.
train_images = (train_images / 255) - 0.5
test_images = (test_images / 255) - 0.5
# Reshape the images.
train_images = np.expand_dims(train_images, axis=3)
test_images = np.expand_dims(test_images, axis=3)
num_filters = 8
filter_size = 3
pool_size = 2
# Build the model.
model = Sequential([
Conv2D(num_filters, filter_size, input_shape=(28, 28, 1)),
MaxPooling2D(pool_size=pool_size),
Flatten(),
Dense(10, activation='softmax'),
])
# Compile the model.
model.compile(
'adam',
loss='categorical_crossentropy',
metrics=['accuracy'],
)
# Train the model.
model.fit(
train_images,
to_categorical(train_labels),
epochs=3,
validation_data=(test_images, to_categorical(test_labels)),
)
# Predict on the first 5 test images.
predictions = model.predict(test_images[:5])
# Print our model's predictions.
print(np.argmax(predictions, axis=1)) # [7, 2, 1, 0, 4]
# Check our predictions against the ground truths.
print(test_labels[:5]) # [7, 2, 1, 0, 4]
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started