Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Written in Java By maintaining the invariant that the elements in the priority queue are sorted in non-increasing order (that is, the largest item is

Written in Java

By maintaining the invariant that the elements in the priority queue are sorted in non-increasing order (that is, the largest item is first, the smallest is last), you can implement both findMin and delete Min in constant time. However, insert is expensive. Do the following: c. Write an implementation that uses these algorithms.

image text in transcribedimage text in transcribedimage text in transcribed

My Big O notation

public class Temp { public static void main(String[] args) { PriorityQueue q = new PriorityQueue(); q.insert(1, 3); q.insert(2, 5); q.insert(5, 1); q.insert(0, 2); System.out.println("Minimum: "+q.findmin()); q.deleteMin(); System.out.println("Minimum: "+q.findmin()); q.deleteMin(); System.out.println("Minimum: "+q.findmin()); q.deleteMin(); System.out.println("Minimum: "+q.findmin()); } } class PriorityQueue{ int []priority; int[]data; int cap, size; PriorityQueue(){ priority=new int[10]; data = new int[10]; size=0; cap=10; } PriorityQueue(int cap){ this.cap=cap; size=0; priority=new int[cap]; data = new int[cap]; } void insert(int k, int p){ if(size==cap){ int []newpr=new int[2*cap]; int []newdata=new int[2*cap]; for(int i=0;ik){ pos++; } for(int j=size;j>pos;j--){ priority[j]=priority[j-1]; data[j]=data[j-1]; } data[pos]=k; priority[pos]=p; size++; } int findmin(){ return size>0?data[size-1]:-1; } void deleteMin(){ if(size>0) size--; } }
Algorithm insert": l/Algorithm insert insert(key, priority) //Check condition if (size == Capacity) //Call the method grow() grow(2 * Capacity + 1); // Add data Data.add(key); I/Add priority Priorities[size] = priority; [/Call the method heapifyUp() heapifyUp(size); //Increment the size size++; Algorithm findMin ": //Algorithm find Min find Min() //Check condition if (size() > 0) // Return return Data.get(size-1); //Throw exception throw new No SuchElementException(); Algorithm delete Min ": l/Algorithm delete Min delete Min() //Remove the last data Data.remove(size-1); //Decrement size size--; Algorithm insert": l/Algorithm insert insert(key, priority) //Check condition if (size == Capacity) //Call the method grow() grow(2 * Capacity + 1); // Add data Data.add(key); I/Add priority Priorities[size] = priority; [/Call the method heapifyUp() heapifyUp(size); //Increment the size size++; Algorithm findMin ": //Algorithm find Min find Min() //Check condition if (size() > 0) // Return return Data.get(size-1); //Throw exception throw new No SuchElementException(); Algorithm delete Min ": l/Algorithm delete Min delete Min() //Remove the last data Data.remove(size-1); //Decrement size size

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

More Books

Students also viewed these Databases questions

Question

3. Identify challenges to good listening and their remedies

Answered: 1 week ago

Question

4. Identify ethical factors in the listening process

Answered: 1 week ago