Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

You are to complete two features: tree traversal and avl balance (right and left) rotations. Look for Fill the blank block comment as shown below:

You are to complete two features:

tree traversal and

avl balance (right and left) rotations.

Look for Fill the blank block comment as shown below:

// // fill the blank //

Test Run Example

Submit a test run screenshot using the test pattern below:

string input = "h,d,l,b,f,j,n,a,c,e,g,i,k,m,o";

Then test the 3 different traversal.

image text in transcribed

The purpose of this assignment is to become familiar with a standard approach in the self-balancing implementation of the C++ binary search tree.

There are four blanked out code segments are:

1. Line 326 BinaryNodeTree class, traversal methods: preorder() and postorder()

image text in transcribed

2. Line 577 AVLtree class leftRotate() method

Make sure change line 591 back to

return y;

*The changing of return was to prevent certain unexpected effect for starter run.

image text in transcribed

3. Line 707, of theAVLtree class removeNode method(), the four AVL rotation utilities: R-R, R-L, L-R, and L-L rotations.

image text in transcribed

Practically, all fill the blank code segment is appear multiple times in this file, you should be able to extract the proper working code when you get familiar with this AVLtree.h file.

When completed, make sure your validation contains:

the traversals, and

sequence of insertions and deletions.

AVLtree.h

#ifndef AVL_TREE

#define AVL_TREE

#include

#include

#include

//////////////////////

// BinaryNode

//////////////////////

template

class BinaryNode

{

private:

ItemType item; // Data portion

BinaryNode* leftChildPtr; // Pointer to left child

BinaryNode* rightChildPtr; // Pointer to right child

int height; // required by an AVL Tree Node

public:

BinaryNode()

: item(nullptr), leftChildPtr(nullptr), rightChildPtr(nullptr), height(1) {}

BinaryNode(const ItemType& anItem)

:item(anItem), leftChildPtr(nullptr), rightChildPtr(nullptr), height(1) {}

BinaryNode(const ItemType& anItem,

BinaryNode* leftPtr,

BinaryNode* rightPtr)

: item(anItem), leftChildPtr(leftPtr), rightChildPtr(rightPtr), height(1) {}

void setItem(const ItemType& anItem) {item = anItem;}

ItemType getItem() const {return item;}

bool isLeaf() const {

return ((leftChildPtr == nullptr) && (rightChildPtr == nullptr));

}

BinaryNode* getLeftChildPtr() const {return leftChildPtr;}

BinaryNode* getRightChildPtr() const {return rightChildPtr;}

void setLeftChildPtr(BinaryNode* leftPtr) {leftChildPtr = leftPtr;}

void setRightChildPtr(BinaryNode* rightPtr) {rightChildPtr = rightPtr;}

void drawTree(BinaryNode* , std::string , std::string) const;

int getHeight() const {return height;}

void setHeight(int h) {height = h;}

}; // end BinaryNode

////////////////////////////

// BinaryNodeTree Class

////////////////////////////

template

class BinaryNodeTree

{

private:

BinaryNode* rootPtr;

protected:

//------------------------------------------------------------

// Protected Utility Methods Section:

// Recursive helper methods for the public methods.

//------------------------------------------------------------

int getHeightHelper(BinaryNode* subTreePtr) const;

int getNumberOfNodesHelper(BinaryNode* subTreePtr) const ;

// Recursively deletes all nodes from the tree.

void destroyTree(BinaryNode* subTreePtr);

// Recursively adds a new node to the tree in a left/right fashion to

// keep the tree balanced.

BinaryNode* balancedAdd(BinaryNode* subTreePtr,

BinaryNode* newNodePtr);

// Removes the target value from the tree by calling moveValuesUpTree

// to overwrite value with value from child.

BinaryNode* removeValue(BinaryNode* subTreePtr,

const ItemType target,

bool& success);

// Copies values up the tree to overwrite value in current node until

// a leaf is reached; the leaf is then removed, since its value is

// stored in the parent.

BinaryNode* moveValuesUpTree(BinaryNode* subTreePtr);

// Recursively searches for target value in the tree by using a

// preorder traversal.

BinaryNode* findNode(BinaryNode* treePtr,

const ItemType& target,

bool& success) const;

// Copies the tree rooted at treePtr and returns a pointer to

// the copy.

BinaryNode* copyTree(const BinaryNode* treePtr) const;

// Recursive traversal helper methods:

void preorder(void visit(ItemType&), BinaryNode* treePtr) const;

void inorder(void visit(ItemType&), BinaryNode* treePtr) const;

void postorder(void visit(ItemType&), BinaryNode* treePtr) const;

public:

//------------------------------------------------------------

// Constructor and Destructor Section.

//------------------------------------------------------------

BinaryNodeTree() : rootPtr(nullptr) {}

BinaryNodeTree(const ItemType& rootItem) {

rootPtr = new BinaryNode(rootItem, nullptr, nullptr);

}

BinaryNodeTree(const ItemType& rootItem,

const BinaryNodeTree* leftTreePtr,

const BinaryNodeTree* rightTreePtr) {

rootPtr = new BinaryNode(rootItem,

copyTree(leftTreePtr->rootPtr),

copyTree(rightTreePtr->rootPtr));

}

BinaryNodeTree(const BinaryNodeTree& tree) {

rootPtr = copyTree(tree.rootPtr);

}

virtual ~BinaryNodeTree() {destroyTree(rootPtr);}

//------------------------------------------------------------

// Public BinaryTreeInterface Methods Section.

//------------------------------------------------------------

bool isEmpty() const {return rootPtr == nullptr;}

int getHeight() const {return getHeightHelper(rootPtr);}

int getNumberOfNodes() const {

return getNumberOfNodesHelper(rootPtr);

}

ItemType getRootData() const;

void setRootData(const ItemType& newData);

bool add(const ItemType& newData); // Adds a node

bool remove(const ItemType& data); // Removes a node

void clear() {destroyTree(rootPtr);rootPtr = nullptr;}

ItemType getEntry(const ItemType& anEntry) const;

bool contains(const ItemType& anEntry) const;

void drawTree(BinaryNode* treePtr, std::string lpad, std::string rpad) const;

//------------------------------------------------------------

// Public Traversals Section.

//------------------------------------------------------------

void preorderTraverse(void visit(ItemType&)) const {

preorder(visit, rootPtr);

}

void inorderTraverse(void visit(ItemType&)) const {

inorder(visit, rootPtr);

}

void postorderTraverse(void visit(ItemType&)) const {

postorder(visit, rootPtr);

}

//------------------------------------------------------------

// Overloaded Operator Section.

//------------------------------------------------------------

BinaryNodeTree& operator=(const BinaryNodeTree& rightHandSide);

}; // end BinaryNodeTree

//////////////////////////////////////////////////////////////

// Protected Utility Methods Section

//////////////////////////////////////////////////////////////

template

int BinaryNodeTree::getHeightHelper(BinaryNode* subTreePtr) const

{

if (subTreePtr == nullptr)

return 0;

else

return 1 + std::max(getHeightHelper(subTreePtr->getLeftChildPtr()),

getHeightHelper(subTreePtr->getRightChildPtr()));

} // end getHeightHelper

template

int BinaryNodeTree::getNumberOfNodesHelper(BinaryNode* subTreePtr) const

{

if (subTreePtr == nullptr)

return 0;

else

return 1 + getNumberOfNodesHelper(subTreePtr->getLeftChildPtr())

+ getNumberOfNodesHelper(subTreePtr->getRightChildPtr());

} // end getNumberOfNodesHelper

template

BinaryNode* BinaryNodeTree::balancedAdd(BinaryNode* subTreePtr,

BinaryNode* newNodePtr)

{

if (subTreePtr == nullptr)

return newNodePtr;

else

{

BinaryNode* leftPtr = subTreePtr->getLeftChildPtr();

BinaryNode* rightPtr = subTreePtr->getRightChildPtr();

if (getHeightHelper(leftPtr) > getHeightHelper(rightPtr))

{

rightPtr = balancedAdd(rightPtr , newNodePtr);

subTreePtr->setRightChildPtr(rightPtr );

}

else

{

leftPtr = balancedAdd(leftPtr, newNodePtr);

subTreePtr->setLeftChildPtr(leftPtr);

} // end if

return subTreePtr;

} // end if

} // end balancedAdd

template

BinaryNode* BinaryNodeTree::moveValuesUpTree(BinaryNode* subTreePtr)

{

BinaryNode* leftPtr = subTreePtr->getLeftChildPtr();

BinaryNode* rightPtr = subTreePtr->getRightChildPtr();

int leftHeight = getHeightHelper(leftPtr);

int rightHeight = getHeightHelper(rightPtr);

if (leftHeight > rightHeight)

{

subTreePtr->setItem(leftPtr->getItem());

leftPtr = moveValuesUpTree(leftPtr);

subTreePtr->setLeftChildPtr(leftPtr);

return subTreePtr;

}

else

{

if (rightPtr != nullptr)

{

subTreePtr->setItem(rightPtr->getItem());

rightPtr =moveValuesUpTree(rightPtr);

subTreePtr->setRightChildPtr(rightPtr);

return subTreePtr;

}

else

{

//this was a leaf!

// value not important

delete subTreePtr;

return nullptr;

} // end if

} // end if

} // end moveValuesUpTree

/** Depth-first search of tree for item.

@param subTreePtr tree to search.

@param target target item to find.

@param success communicate to client we found it.

@returns A pointer to node containing the item. */

template

BinaryNode* BinaryNodeTree::removeValue(BinaryNode* subTreePtr,

const ItemType target,

bool& success)

{

if(subTreePtr == nullptr) // not found here

return nullptr;

if (subTreePtr->getItem() == target) // found it

{

subTreePtr = moveValuesUpTree(subTreePtr);

success = true;

return subTreePtr;

}

else

{

BinaryNode* targetNodePtr = removeValue(subTreePtr->getLeftChildPtr(), target, success);

subTreePtr->setLeftChildPtr(targetNodePtr);

if (!success) // no need to search right subTree

{

targetNodePtr = removeValue(subTreePtr->getRightChildPtr(), target, success);

subTreePtr->setRightChildPtr(targetNodePtr);

} // end if

return subTreePtr;

} // end if

} // end removeValue

template

BinaryNode* BinaryNodeTree::findNode(BinaryNode* treePtr,

const ItemType& target,

bool& success) const

{

if (treePtr == nullptr) // not found here

return nullptr;

if (treePtr->getItem() == target) // found it

{

success = true;

return treePtr;

}

else

{

BinaryNode* targetNodePtr = findNode(treePtr->getLeftChildPtr(), target, success);

if (!success) // no need to search right subTree

{

targetNodePtr = findNode(treePtr->getRightChildPtr(), target, success);

} // end if

return targetNodePtr;

} // end if

} // end findNode

template

BinaryNode* BinaryNodeTree::copyTree(const BinaryNode* treePtr) const

{

BinaryNode* newTreePtr = nullptr;

// Copy tree nodes during a preorder traversal

if (treePtr != nullptr)

{

// Copy node

newTreePtr = new BinaryNode(treePtr->getItem(), nullptr, nullptr);

newTreePtr->setLeftChildPtr(copyTree(treePtr->getLeftChildPtr()));

newTreePtr->setRightChildPtr(copyTree(treePtr->getRightChildPtr()));

} // end if

return newTreePtr;

} // end copyTree

template

void BinaryNodeTree::destroyTree(BinaryNode* subTreePtr)

{

if (subTreePtr != nullptr)

{

destroyTree(subTreePtr->getLeftChildPtr());

destroyTree(subTreePtr->getRightChildPtr());

delete subTreePtr;

} // end if

} // end destroyTree

//////////////////////////////////////////////////////////////

// Protected Tree Traversal Sub-Section

//////////////////////////////////////////////////////////////

template

void BinaryNodeTree::preorder(void visit(ItemType&), BinaryNode* treePtr) const

{

//

// fill the blank

//

} // end preorder

template

void BinaryNodeTree::inorder(void visit(ItemType&), BinaryNode* treePtr) const

{

if(treePtr) {

inorder( visit, treePtr->getLeftChildPtr());

ItemType thisItem = treePtr->getItem();

visit(thisItem);

inorder( visit, treePtr->getRightChildPtr());

}

} // end inorder

template

void BinaryNodeTree::postorder(void visit(ItemType&), BinaryNode* treePtr) const

{

//

// fill the blank

//

} // end postorder

//////////////////////////////////////////////////////////////

// PUBLIC METHODS BEGIN HERE

//////////////////////////////////////////////////////////////

//////////////////////////////////////////////////////////////

// Public BinaryTreeInterface Methods Section

//////////////////////////////////////////////////////////////

template

ItemType BinaryNodeTree::getRootData() const

{

if (isEmpty())

std::cout

return rootPtr->getItem();

} // end getRootData

template

void BinaryNodeTree::setRootData(const ItemType& newItem)

{

if (isEmpty())

rootPtr = new BinaryNode(newItem, nullptr, nullptr);

else

rootPtr->setItem(newItem);

} // end setRootData

template

bool BinaryNodeTree::add(const ItemType& newData)

{

BinaryNode* newNodePtr = new BinaryNode(newData);

rootPtr = balancedAdd(rootPtr, newNodePtr);

return true;

} // end add

template

bool BinaryNodeTree::remove(const ItemType& target)

{

bool isSuccessful = false;

rootPtr = removeValue(rootPtr, target, isSuccessful);

return isSuccessful;

} // end remove

template

ItemType BinaryNodeTree::getEntry(const ItemType& anEntry) const

{

bool isSuccessful = false;

BinaryNode* binaryNodePtr = findNode(rootPtr, anEntry, isSuccessful);

if (isSuccessful)

return binaryNodePtr->getItem();

else

std::cout

} // end getEntry

template

bool BinaryNodeTree:: contains(const ItemType& anEntry) const

{

bool isSuccessful = false;

findNode(rootPtr, anEntry, isSuccessful);

return isSuccessful;

} // end contains

//////////////////////////////////////////////////////////////

// Public Traversals Section

//////////////////////////////////////////////////////////////

template

void BinaryNodeTree::drawTree(BinaryNode* treePtr, std::string lpad, std::string rpad) const

{

std::string pad = lpad.substr(0, lpad.size() - 1);

if (treePtr == nullptr) return;

drawTree(treePtr->getRightChildPtr(), rpad + " |", rpad + " ");

std::cout getItem()

drawTree(treePtr->getLeftChildPtr(), lpad + " ", lpad + " |");

} // end drawTree

//////////////////////////////////////////////////////////////

// Overloaded Operator

//////////////////////////////////////////////////////////////

template

BinaryNodeTree& BinaryNodeTree::

operator=(const BinaryNodeTree& rightHandSide)

{

if (!isEmpty())

clear();

this = copyTree(&rightHandSide);

return *this;

} // end operator=

//////////////////////////////

// AVLtree Class

//////////////////////////////

template

class AVLtree : public BinaryNodeTree

{

private:

BinaryNode* rootPtr;

int getHeight(BinaryNode* node);

int getBalance(BinaryNode* node);

protected:

ItemType findSuccessorValue(BinaryNode* subTreePtr);

//------------------------------------------------------------

// Protected Utility Methods Section:

// Recursive helper methods for the public methods.

//------------------------------------------------------------

// Recursively finds where the given node should be placed and

// inserts it in a leaf at that point.

BinaryNode* insertInorder(BinaryNode* subTreePtr,

BinaryNode* newNode);

// Removes the given target value from the tree while maintaining a

// binary search tree.

BinaryNode* removeValue(BinaryNode* subTreePtr,

const ItemType target,

bool& success);

// Removes a given node from a tree while maintaining a

// binary search tree.

BinaryNode* removeNode(BinaryNode* nodePtr);

// Removes the leftmost node in the left subtree of the node

// pointed to by nodePtr.

// Sets inorderSuccessor to the value in this node.

// Returns a pointer to the revised subtree.

BinaryNode* removeLeftmostNode(BinaryNode* subTreePtr,

ItemType& inorderSuccessor);

// Returns a pointer to the node containing the given value,

// or nullptr if not found.

BinaryNode* findNode(BinaryNode* treePtr,

const ItemType& target) const;

public:

//------------------------------------------------------------

// Constructor and Destructor Section.

//------------------------------------------------------------

AVLtree() : rootPtr(nullptr) {}

AVLtree(const ItemType& rootItem) {

rootPtr = new BinaryNode(rootItem, nullptr, nullptr);

}

AVLtree(const AVLtree& tree) {

rootPtr = this->copyTree(tree.rootPtr);

}

virtual ~AVLtree() {

this->destroyTree(rootPtr);

}

//------------------------------------------------------------

// Public Methods Section.

//------------------------------------------------------------

bool isEmpty() const { return rootPtr == nullptr; }

int getHeight() const { return this->getHeightHelper(rootPtr); }

int getNumberOfNodes() const { return this->getNumberOfNodesHelper(rootPtr); }

ItemType getRootData() const;

void setRootData(const ItemType& newData) const {

std::cout

}

bool add(const ItemType& newEntry);

bool remove(const ItemType& anEntry);

void clear() { this->destroyTree(rootPtr); rootPtr = nullptr; }

ItemType getEntry(const ItemType& anEntry) const;

// Override contains to use our improved findNode:

bool contains(const ItemType& anEntry) const {

return findNode(rootPtr, anEntry); // nullptr is same as false

}

//------------------------------------------------------------

// Public Traversals Section.

//------------------------------------------------------------

void preorderTraverse(void visit(ItemType&)) const { // Call inherited method

this->preorder(visit, rootPtr); // Call inherited method

}

void inorderTraverse(void visit(ItemType&)) const {

this->inorder(visit, rootPtr);

}

void postorderTraverse(void visit(ItemType&)) const {

this->postorder(visit, rootPtr);

}

void drawAVLtree() const;

//------------------------------------------------------------

// Overloaded Operator Section.

//------------------------------------------------------------

AVLtree& operator=(const AVLtree& rightHandSide);

}; // end AVLtree

////////////////////////////////////////////////////////////

// non-member public helper

int max(int a, int b) { return (a > b) ? a : b; }

template

int height(BinaryNode* nodePtr) {

if (nodePtr == NULL) return 0;

return nodePtr->getHeight();

}

//////////////////////////////////////////////////////////////

//

// Protected Utility Methods Section

//

//////////////////////////////////////////////////////////////

template

BinaryNode* rightRotate(BinaryNode* y)

{ // std::cout

BinaryNode* x = y->getLeftChildPtr();

BinaryNode* T2 = x->getRightChildPtr();

// Perform rotation

x->setRightChildPtr(y);

y->setLeftChildPtr(T2);

// Update heights

y->setHeight(max(height(y->getLeftChildPtr()), height(y->getRightChildPtr())) + 1);

x->setHeight(max(height(x->getLeftChildPtr()), height(x->getRightChildPtr())) + 1);

// Return new root

return y; // should be x

}

template

BinaryNode* leftRotate(BinaryNode* x)

{

BinaryNode* y = x->getRightChildPtr();

BinaryNode* T2 = y->getLeftChildPtr();

// Perform rotation

// Update heights

//

// fill the blank

//

// Return new root

return x; // should be y

}

template

BinaryNode* AVLtree

::insertInorder(BinaryNode* subTreePtr,

BinaryNode* newNodePtr)

{

if (subTreePtr == nullptr)

return newNodePtr;

else

{ // 1. Perform the normal BST insertion */

if (newNodePtr->getItem() getItem())

subTreePtr->setLeftChildPtr(insertInorder(subTreePtr->getLeftChildPtr(), newNodePtr));

else

subTreePtr->setRightChildPtr(insertInorder(subTreePtr->getRightChildPtr(), newNodePtr));

int leftHeight = getHeight(subTreePtr->getLeftChildPtr());

int rightHeight = getHeight(subTreePtr->getRightChildPtr());

// 2. Update height of this ancestor node

subTreePtr->setHeight(max(leftHeight, rightHeight) + 1);

// 3. Get the balance factor of this ancestor node to check whether this node became unbalanced

int balance = leftHeight - rightHeight;

BinaryNode* leftNode = subTreePtr->getLeftChildPtr();

BinaryNode* rightNode = subTreePtr->getRightChildPtr();

ItemType newKey = newNodePtr->getItem();

// If this node becomes unbalanced, then there are 4 cases

// 3.1 Left Left Case

if( balance > 1 && newKey getItem() ) return rightRotate(subTreePtr);

// 3.2 Right Right Case

if( balance rightNode->getItem() ) return leftRotate(subTreePtr);

// 3.3 Left Right Case

if (balance > 1 && newKey > leftNode->getItem()) {

subTreePtr->setLeftChildPtr(leftRotate(leftNode));

return rightRotate(subTreePtr); }

// 3.4 Right Left Case

if (balance getItem()) {

subTreePtr->setRightChildPtr(rightRotate(rightNode));

return leftRotate(subTreePtr); }

return subTreePtr;

} // end if

} // end AVL insertInorder()

template

int AVLtree::getHeight(BinaryNode* node)

{

if (node == nullptr) return 0;

return node->getHeight();

}

template

BinaryNode* AVLtree

::removeValue(BinaryNode* subTreePtr,

const ItemType target, bool& success) {

BinaryNode* nodePtr = subTreePtr;

// 1. Standard BST Deletion

if (subTreePtr == nullptr) { // Not found here

return nullptr;

}

if (subTreePtr->getItem() == target) {

success = true;

if (nodePtr->isLeaf()) {

delete nodePtr;

return (nodePtr = nullptr); // Assign and return (student maybe should have separate statements)

}

else if (nodePtr->getLeftChildPtr() == nullptr) { // Has rightChild only

BinaryNode* nodeToConnectPtr = nodePtr->getRightChildPtr();

delete nodePtr;

nodePtr = nullptr;

return nodeToConnectPtr;

}

else if (nodePtr->getRightChildPtr() == nullptr) { // Has left child only

BinaryNode* nodeToConnectPtr = nodePtr->getLeftChildPtr();

delete nodePtr;

nodePtr = nullptr;

return nodeToConnectPtr;

}

else { // Has two children

// Traditional way to remove a value in a node with two children

ItemType temp = findSuccessorValue(nodePtr->getRightChildPtr());

nodePtr->setItem(temp);

nodePtr->setRightChildPtr(removeValue(nodePtr->getRightChildPtr(), temp, success));

}

}

else {

if (subTreePtr->getItem() > target)

// Search the left subtree

subTreePtr->setLeftChildPtr(removeValue(subTreePtr->getLeftChildPtr(), target, success));

else

// Search the right subtree

subTreePtr->setRightChildPtr(removeValue(subTreePtr->getRightChildPtr(), target, success));

} // end if

// If only one node, return node

if (nodePtr == nullptr)

{

return nodePtr;

}

// 2. update height of current node and get balance

int leftHeight = getHeight(nodePtr->getLeftChildPtr());

int rightHeight = getHeight(nodePtr->getRightChildPtr());

int balance = leftHeight - rightHeight;

nodePtr->setHeight(max(leftHeight, rightHeight) + 1);

// 2.1 Left Left Case

// 2.2 right Right Case

// 2.3 Left Right Case

// 2.4 Right Left Case

return nodePtr;

} // end removeValue

template

BinaryNode* AVLtree

::removeNode(BinaryNode* nodePtr) {

// Case 1) Node is a leaf - it is deleted

// Case 2) Node has one child - parent adopts child

// Case 3) Node has two children:

// Traditional implementation: Find successor node.

// Alternate implementation: Find successor value and replace node's value;

// alternate does not need pass-by-reference

if (nodePtr->isLeaf()) {

delete nodePtr;

return (nodePtr = nullptr); // Assign and return (student maybe should have separate statements)

}

else if (nodePtr->getLeftChildPtr() == nullptr) { // Has rightChild only

BinaryNode* nodeToConnectPtr = nodePtr->getRightChildPtr();

delete nodePtr;

nodePtr = nullptr;

return nodeToConnectPtr;

}

else if (nodePtr->getRightChildPtr() == nullptr) { // Has left child only

BinaryNode* nodeToConnectPtr = nodePtr->getLeftChildPtr();

delete nodePtr;

nodePtr = nullptr;

return nodeToConnectPtr;

}

else { // Has two children

// Traditional way to remove a value in a node with two children

ItemType newNodeValue;

nodePtr->setRightChildPtr(removeLeftmostNode(nodePtr->getRightChildPtr(), newNodeValue));

nodePtr->setItem(newNodeValue);

return nodePtr;

}

} // end removeNode

template

int AVLtree::getBalance(BinaryNode* node)

{

if (node == nullptr)

{

return 0;

}

return height(node->getLeftChildPtr()) - height(node->getRightChildPtr());

}

template

BinaryNode* AVLtree

::removeLeftmostNode(BinaryNode* nodePtr,

ItemType& inorderSuccessor) {

if (nodePtr->getLeftChildPtr() == nullptr) {

inorderSuccessor = nodePtr->getItem();

return removeNode(nodePtr);

}

else {

nodePtr->setLeftChildPtr(removeLeftmostNode(nodePtr->getLeftChildPtr(), inorderSuccessor));

return nodePtr;

} // end if

} // end removeLeftmostNode

template

ItemType AVLtree::findSuccessorValue(BinaryNode* subTreePtr)

{

BinaryNode* myLeftChildPtr = subTreePtr->getLeftChildPtr();

if (myLeftChildPtr != nullptr)

{

if (myLeftChildPtr->getLeftChildPtr() == nullptr) {

ItemType nodeItemValue = myLeftChildPtr->getItem();

subTreePtr->setLeftChildPtr(removeNode(myLeftChildPtr));

return nodeItemValue;

}

else

{

return findSuccessorValue(subTreePtr->getLeftChildPtr());

} // end if

}

return subTreePtr->getItem();

} // end findSuccessorValue

// Override findNode because now we can use a binary search:

template

BinaryNode* AVLtree

::findNode(BinaryNode* subTreePtr,

const ItemType& target) const {

// Uses a binary search

if (subTreePtr == nullptr)

return nullptr; // Not found

else if (subTreePtr->getItem() == target)

return subTreePtr; // Found

else if (subTreePtr->getItem() > target)

// Search left subtree

return findNode(subTreePtr->getLeftChildPtr(), target);

else

// Search right subtree

return findNode(subTreePtr->getRightChildPtr(), target);

} // end findNode

//////////////////////////////////////////////////////////////

// Public BinaryTreeInterface Methods Section

//////////////////////////////////////////////////////////////

template

ItemType AVLtree::getRootData() const {

if (isEmpty())

std::cout

return rootPtr->getItem();

} // end getRootData

template

bool AVLtree::add(const ItemType& newData) {

BinaryNode* newNodePtr = new BinaryNode(newData);

rootPtr = insertInorder(rootPtr, newNodePtr);

return true;

} // end add

template

bool AVLtree::remove(const ItemType& target) {

bool isSuccessful = false;

rootPtr = removeValue(rootPtr, target, isSuccessful);

return isSuccessful;

} // end remove

// Override getEntry to use our improved findNode:

template

ItemType AVLtree::getEntry(const ItemType& anEntry) const {

BinaryNode* nodeWithEntry = findNode(rootPtr, anEntry);

if (nodeWithEntry == nullptr)

std::cout

else

return nodeWithEntry->getItem();

} // end getEntry

//////////////////////////////////////////////////////////////

// Public Traversals Section

//////////////////////////////////////////////////////////////

template

void AVLtree::drawAVLtree() const {

std::cout

this->drawTree(rootPtr, " ", " ");

std::cout

}

//////////////////////////////////////////////////////////////

// Overloaded Operator

//////////////////////////////////////////////////////////////

template

AVLtree& AVLtree::

operator=(const AVLtree& rightHandSide) {

if (!isEmpty())

clear();

this = copyTree(&rightHandSide); // Call inherited method

return *this;

} // end operator=

#endif

Running /home/ubuntu/workspace/consc?2 10/m88/testAv1.cpp Create a default AVLtree (BST (after completion of this assignment, this should be an AVL Tree): Display the binary search tree as it is being built: t-h tI1 0 rn +a +n +0 t-h 0 ?m ?a BINARY SEARCH TREE MENU Delimiter is(,) t TOGGLE trace: (OFF) LEVEL-0 p PRINT tree e - iSEMPTY h - getHEIGHT n -NUMBER of Nodes b-BUILD tree from a node list i - INSERT r -REMOVE C -CLEAR 1 In Order Traversal 2 -Pre Order Traversal 3 -Post Order Traversal mMENU -this menu q - quit this menu CE_level_0 >YOUR CHOICE-> 1 In-order traversal list: abcdefgh?jk1mnop RACE level 0 >YOUR CHOICE-2 re-order traversal list: jgdbacefh?n1knop RACE level 0 ->YOUR CHOICE-> 3 ost-order traversal list: acbfed?hgkmlpon TRACE level 0YOUR CHOICE- 17 Chern T Form 10. pdf psbjpeg Running /home/ubuntu/workspace/consc?2 10/m88/testAv1.cpp Create a default AVLtree (BST (after completion of this assignment, this should be an AVL Tree): Display the binary search tree as it is being built: t-h tI1 0 rn +a +n +0 t-h 0 ?m ?a BINARY SEARCH TREE MENU Delimiter is(,) t TOGGLE trace: (OFF) LEVEL-0 p PRINT tree e - iSEMPTY h - getHEIGHT n -NUMBER of Nodes b-BUILD tree from a node list i - INSERT r -REMOVE C -CLEAR 1 In Order Traversal 2 -Pre Order Traversal 3 -Post Order Traversal mMENU -this menu q - quit this menu CE_level_0 >YOUR CHOICE-> 1 In-order traversal list: abcdefgh?jk1mnop RACE level 0 >YOUR CHOICE-2 re-order traversal list: jgdbacefh?n1knop RACE level 0 ->YOUR CHOICE-> 3 ost-order traversal list: acbfed?hgkmlpon TRACE level 0YOUR CHOICE- 17 Chern T Form 10. pdf psbjpeg

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

DB2 9 For Linux UNIX And Windows Advanced Database Administration Certification Certification Study Guide

Authors: Roger E. Sanders, Dwaine R Snow

1st Edition

1583470808, 978-1583470800

More Books

Students also viewed these Databases questions