Prove that the matrices $mathbf{H}$ and $mathbf{I}-mathbf{H}$ are idempotent, that is, $mathbf{H H}=mathbf{H}$ and $(mathbf{I}-mathbf{H})(mathbf{I}-mathbf{H})=mathbf{I}-mathbf{H}$.
Question:
Prove that the matrices $\mathbf{H}$ and $\mathbf{I}-\mathbf{H}$ are idempotent, that is, $\mathbf{H H}=\mathbf{H}$ and $(\mathbf{I}-\mathbf{H})(\mathbf{I}-\mathbf{H})=\mathbf{I}-\mathbf{H}$.
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Introduction To Linear Regression Analysis
ISBN: 9781119578727
6th Edition
Authors: Douglas C. Montgomery, Elizabeth A. Peck, G. Geoffrey Vining
Question Posted: