Suppose that (left{x_{t} ight}) is an (mathrm{I}(d)) process for (d>k), for some integer (k>1). (a) Show that

Question:

Suppose that \(\left\{x_{t}\right\}\) is an \(\mathrm{I}(d)\) process for \(d>k\), for some integer \(k>1\).

(a) Show that \(\left\{x_{t}\right\}\) is an \(\mathrm{I}(d+k)\) process

(b) Show that \(\triangle^{k}\left(\left\{x_{t}\right\}\right)\) is an \(\mathrm{I}(d-k)\) process.

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question
Question Posted: