Exercise3.11 Let t1, ..., tn exp(). InExample3.6,weconstructed95%confidenceintervalsfor , = Et = 1/ and p =
Question:
Exercise3.11 Let t1, ..., tn ∼ exp(θ). InExample3.6,weconstructed95%confidenceintervalsfor
θ, μ = Et = 1/θ and p = P(t > 5) = e−5θ based onthepivot2θ Σni
=1 ti ∼ χ2 2n. Showthatanother pivotis θtmin ∼ exp(n). Useittoconstruct95%confidenceintervalsfor θ, μ, and p, andcompare them withthosefromExample3.6forthesamedata.
Exercise3.12 If Lα/2 and Uα/2 are thelowerandupper (1−α/2)100% confidencebounds,then
(Lα/2 , Uα/2) is a (1−α)100%-levelconfidenceintervalfor θ.
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Statistical Theory A Concise Introduction Texts In Statistical Science
ISBN: 9781032007458
2nd Edition
Authors: Felix Abramovich, Ya'acov Ritov
Question Posted: