Exercise4.13 (F-test fortheequalityofvariances) Consider twoindependentnormalsamples X1, ...,Xn N (1,2 1 ) and Y1, ...,Ym N (2,2 2
Question:
Exercise4.13 (F-test fortheequalityofvariances) Consider twoindependentnormalsamples X1, ...,Xn ∼N (μ1,σ2 1 ) and Y1, ...,Ym ∼N (μ2,σ2 2 ), wherealltheparametersareunknown.
1. Derivethegeneralizedlikelihoodratiofortestingtheequalityofvariances H0 : σ2 1 = σ2 2 vs.
H1 : σ2 1 ̸= σ2 2 and showthatitisafunctionofthesampledvariancesratio F = s2y
/s2x
, where s2y
= 1 m−1 Σmj
=1(Yj −¯Y )2 and s2x
= 1 n−1 Σn i=1(Xi− ¯X )2.
2. Showthatunderthenullhypothesis, F H0∼ Fm−1,n−1.
3. DerivethecorrespondingapproximateGLRTatlevel α.
4. In particular,suchatestisrelevantfortestingtheassumptionoftheequalityofvariancesrequired for thetwo-sample t-test (seeExercise4.12).Checkthisassumptionfortheratssurvivaldatain
Step by Step Answer:
Statistical Theory A Concise Introduction Texts In Statistical Science
ISBN: 9781032007458
2nd Edition
Authors: Felix Abramovich, Ya'acov Ritov