Let (mathbf{P}) be a projection matrix. Show that the diagonal elements of (mathbf{P}) all lie in the
Question:
Let \(\mathbf{P}\) be a projection matrix. Show that the diagonal elements of \(\mathbf{P}\) all lie in the interval \([0,1]\). In particular, for \(\mathbf{P}=\mathbf{X X}^{+}\)in Theorem 5.1, the leverage value \(p_{i}:=\mathbf{P}_{i i}\) satisfies \(0 \leqslant p_{i}\) \(\leqslant 1\) for all \(i\).
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Data Science And Machine Learning Mathematical And Statistical Methods
ISBN: 9781118710852
1st Edition
Authors: Dirk P. Kroese, Thomas Taimre, Radislav Vaisman, Zdravko Botev
Question Posted: