3. Consider the RSA cryptosystem, where $p stackrel{text{def}}{=} 25525635435900842730349748303929424117$, $q stackrel{text{def}}{=} 259965242284515788826732110240207250949$. (a) Compute the modulus *n*.
Question:
3. Consider the RSA cryptosystem, where
$p \stackrel{\text{def}}{=} 25525635435900842730349748303929424117$,
$q \stackrel{\text{def}}{=} 259965242284515788826732110240207250949$.
(a) Compute the modulus *n*.
(b) Compute (*p* - 1) * (*q* - 1).
(c) Which of the two possible public-key exponents *e* is legitimate, 3 or 31?
(d) Take the one legitimate *e* from the previous item and compute the secret-key exponent *d*. If need be, use the extended Euclid algorithm of Exercise 2.19-1.
(e) Encrypt the message 19857367.
(f) Decrypt the message 27.
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Secure Communicating Systems Design Analysis And Implementation
ISBN: 9780521807319
1st Edition
Authors: Michael R. A. Huth
Question Posted: