Consider regular and irregular 3node onedimensional elements in figure 7.3. Both elements are mapped into the same

Question:

Consider regular and irregular 3node onedimensional elements in figure 7.3. Both elements are mapped into the same reference element. When three different displacement conditions are imposed:

a. zero strain: \(u(x)=\) constant, \(\mathrm{d} u / \mathrm{d} x=0\)

b. constant strain: \(u(x)=x, \mathrm{~d} u / \mathrm{d} x=1\)

c. linear strain: \(u(x)=x^{2}, \mathrm{~d} u / \mathrm{d} x=2 x\)

Plot the mapping relation \(x(s)\), Jacobian \(d x / d s\), displacement gradient \(\mathrm{d} u / \mathrm{d} s\) in the


reference element, and strain \(\mathrm{d} u / \mathrm{d} x\) for each condition and check whether the interpolation yields accurate results or not.

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Introduction To Finite Element Analysis And Design

ISBN: 9781119078722

2nd Edition

Authors: Nam H. Kim, Bhavani V. Sankar, Ashok V. Kumar

Question Posted: