Consider the matrix equation ([mathbf{A}]{mathbf{x}}={mathbf{b}}) given by a. Construct the quadratic form (F(mathbf{x})={mathbf{x}}^{mathrm{T}}[mathbf{A}]{mathbf{x}}-2{mathbf{x}}^{mathrm{T}}{mathbf{b}}). b. Find ({mathbf{x}}=left{mathbf{x}^{*} ight})
Question:
Consider the matrix equation \([\mathbf{A}]\{\mathbf{x}\}=\{\mathbf{b}\}\) given by
a. Construct the quadratic form \(F(\mathbf{x})=\{\mathbf{x}\}^{\mathrm{T}}[\mathbf{A}]\{\mathbf{x}\}-2\{\mathbf{x}\}^{\mathrm{T}}\{\mathbf{b}\}\).
b. Find \(\{\mathbf{x}\}=\left\{\mathbf{x}^{*}\right\}\) by minimizing \(F(\mathbf{x})\).
c. Verify that the vector \(\left\{\mathbf{x}^{*}\right\}\) satisfies \([\mathbf{A}]\{\mathbf{x}\}=\{\mathbf{b}\}\).
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Introduction To Finite Element Analysis And Design
ISBN: 9781119078722
2nd Edition
Authors: Nam H. Kim, Bhavani V. Sankar, Ashok V. Kumar
Question Posted: