Find the state-space form of the mathematical model. (left{begin{array}{l}2 ddot{x}_{1}+9left(x_{1}-x_{3} ight)-0.8left(dot{x}_{2}-dot{x}_{1} ight)-2left(x_{2}-x_{1} ight)=F(t) ddot{x}_{2}+0.8left(dot{x}_{2}-dot{x}_{1} ight)+2left(x_{2}-x_{1} ight)=0
Question:
Find the state-space form of the mathematical model.
\(\left\{\begin{array}{l}2 \ddot{x}_{1}+9\left(x_{1}-x_{3}\right)-0.8\left(\dot{x}_{2}-\dot{x}_{1}\right)-2\left(x_{2}-x_{1}\right)=F(t) \\ \ddot{x}_{2}+0.8\left(\dot{x}_{2}-\dot{x}_{1}\right)+2\left(x_{2}-x_{1}\right)=0 \\ 2 x_{3}=0.45\left(x_{1}-x_{3}\right)\end{array}\right.\), outputs are \(x_{2}\) and \(\dot{x}_{2}\).
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Modeling And Analysis Of Dynamic Systems
ISBN: 9781138726420
3rd Edition
Authors: Ramin S. Esfandiari, Bei Lu
Question Posted: