29. Stratified Sampling: Let Ui,..., U be independent random numbers and set = (i/f- + / -...
Question:
29. Stratified Sampling: Let Ui,..., U„ be independent random numbers and set = (i/f- + / - l)/n, i = 1, n. Hence, £/,·, / > 1, is uniform on
((/ - l)/n, i/n). J]?= é æÖ^/ç is called the stratified sampling estimator of
(a) Show that E[IU é = io*W
(b) Show that Var[E?= ! *(£/,)//!] < Var[E?e ! g(Ui)/n].
Hint: Let (7 be uniform (0, 1) and define Í by Í = i if
(/ - \)/n < U < i/n, i = 1 , n . Now use the conditional variance formula to obtain Varfe(£/)) = E[Yav(g(U)\N)] + Var(£[g(£/)|N])
>^[Var(g(C/)|^]
= £ Var(g(£/)|7V=/)_ £ Var^fi)]
/ = é ç i l = ç
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Question Posted: