Let (f(x)>0) be a nondecreasing function. Prove that if (mathbf{M}(f(|xi-M xi|)) exists, then [ mathbf{P}{|xi-mathbf{M} xi| geqslant

Question:

Let \(f(x)>0\) be a nondecreasing function. Prove that if \(\mathbf{M}(f(|\xi-M \xi|)\) exists, then

\[ \mathbf{P}\{|\xi-\mathbf{M} \xi| \geqslant \varepsilon\} \leqslant \frac{\mathbf{M} f(|\xi-\mathbf{M} \xi|)}{f(\varepsilon)} \]

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Theory Of Probability

ISBN: 9781351408585

6th Edition

Authors: Boris V Gnedenko

Question Posted: