Let (f(x)>0) be a nondecreasing function. Prove that if (mathbf{M}(f(|xi-M xi|)) exists, then [ mathbf{P}{|xi-mathbf{M} xi| geqslant
Question:
Let \(f(x)>0\) be a nondecreasing function. Prove that if \(\mathbf{M}(f(|\xi-M \xi|)\) exists, then
\[ \mathbf{P}\{|\xi-\mathbf{M} \xi| \geqslant \varepsilon\} \leqslant \frac{\mathbf{M} f(|\xi-\mathbf{M} \xi|)}{f(\varepsilon)} \]
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Question Posted: