Question: A liquid is filling a container that has the form of a cone of angle around a vertical axis (Fig. 1.9). The liquid enters

A liquid is filling a container that has the form of a cone of angle α around a vertical axis (Fig. 1.9). The liquid enters the cone from the apex through a hole of diameter d at a velocity v (t) = kt where k is a constant. When the surface of the liquid is at height h (t), the volume is


V (t) = 1 3 tan a h (t).


Initially, at time t = 0, the height h (0) = 0. Find an expression for the rate of change of volume V˙ (t) and determine h (t).


Figure 1.9


image

V (t) = 1 3 tan a h (t).

Step by Step Solution

3.42 Rating (171 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock

ANSWERS To find the rate of change of volume V t we need to take the derivat... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Thermodynamics Fundamentals Questions!