Suppose that a consumer's utility function is U(x,y)= xy + 10y. The marginal utilities for this utility

Question:

Suppose that a consumer's utility function is U(x,y)= xy + 10y. The marginal utilities for this utility function are MUx= y and MUy = x+10. The price of good x is Px and the price of good y is Py, with both prices positive. The consumer has income I. 
Suppose now that income is $100, I=100. Since the amount of good x can never be negative, what is the maximum value of Px for which the consumer could ever purchase ever purchase any of good x? 

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Microeconomics

ISBN: 978-0073375854

2nd edition

Authors: Douglas Bernheim, Michael Whinston

Question Posted: