Suppose that each of two statisticians A and B must estimate a certain parameter whose value

Question:

Suppose that each of two statisticians A and B must estimate a certain parameter θ whose value is unknown (θ > 0). Statistician A can observe the value of a random variable X, which has the gamma distribution with parameters α and β, where α = 3 and β = θ; statistician B can observe the value of a random variable Y , which has the Poisson distribution with mean 2θ. Suppose that the value observed by statistician A is X = 2 and the value observed by statistician B is Y = 3. Show that the likelihood functions determined by these observed values are proportional, and find the common value of the M.L.E. of θ obtained by each statistician. Distribution
The word "distribution" has several meanings in the financial world, most of them pertaining to the payment of assets from a fund, account, or individual security to an investor or beneficiary. Retirement account distributions are among the most...
Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Probability And Statistics

ISBN: 9780321500465

4th Edition

Authors: Morris H. DeGroot, Mark J. Schervish

Question Posted: