We have three ways to find the orthogonal projection of a vector into a line, the Definition

Question:

We have three ways to find the orthogonal projection of a vector into a line, the Definition 1.1 way from the first subsection of this section, the Example 3.2 and 3.3 way of representing the vector with respect to a basis for the space and then keeping the M part, and the way of Theorem 3.8. For these cases, do all three ways.
(a)
M = {(:) x+y = 0} -3

(b)

We have three ways to find the orthogonal projection of
Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Linear Algebra

ISBN: 9780982406212

1st Edition

Authors: Jim Hefferon

Question Posted: