You are dealt 5 cards from a standard 52-card deck. Determine the probability of being dealt two
Question:
(a) How many ways can 5 cards be selected from a 52-card deck?
(b) Each deck contains 4 twos, 4 threes, and so on. How many ways can three of the same card be selected from the deck?
(c) The remaining 2 cards must be different from the 3 chosen and different from each other. For example, if we drew three kings, the 4th card cannot be a king. After selecting the three of a kind, there are 12 different ranks of card remaining in the deck that can be chosen. If we have three kings, then we can choose twos, threes, and so on. Of the 12 ranks remaining, we choose 2 of them and then select one of the 4 cards in each of the two chosen ranks. How many ways can we select the remaining 2 cards?
(d) Use the General Multiplication Rule to compute the probability of obtaining three of a kind. That is, what is the probability of selecting three of a kind and two cards that are not like?
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Question Posted: