Consider a 20-L evacuated rigid bottle that is surrounded by the atmosphere at 100 kPa and 258C.

Question:

Consider a 20-L evacuated rigid bottle that is surrounded by the atmosphere at 100 kPa and 258C. A valve at the neck of the bottle is now opened and the atmospheric air is allowed to flow into the bottle. The air trapped in the bottle eventually reaches thermal equilibrium with the atmosphere as a result of heat transfer through the wall of the bottle. The valve remains open during the process so that the trapped air also reaches mechanical equilibrium with the atmosphere. Determine the net heat transfer through the wall of the bottle and the exergy destroyed during this filling process.
Consider a 20-L evacuated rigid bottle that is surrounded by
Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Thermodynamics An Engineering Approach

ISBN: 978-0073398174

8th edition

Authors: Yunus A. Cengel, Michael A. Boles

Question Posted: