Consider the data set shown in Table 5.1 Table 5.1. Data set for Exercise 7. (a) Estimate

Question:

Consider the data set shown in Table 5.1
Table 5.1. Data set for Exercise 7.
Consider the data set shown in Table 5.1
Table 5.1. Data

(a) Estimate the conditional probabilities for P(A|+), P(B|+), P(C|+), P(A|ˆ’), P(B|ˆ’), and P(C|ˆ’).
Answer:
P(A = 1|ˆ’) = 2/5 = 0.4, P(B = 1|ˆ’) = 2/5 = 0.4,
P(C = 1|ˆ’) = 1, P(A = 0|ˆ’) = 3/5 = 0.6,
P(B = 0|ˆ’) = 3/5 = 0.6, P(C = 0|ˆ’) = 0; P(A = 1|+) = 3/5 = 0.6,
P(B = 1|+) = 1/5 = 0.2, P(C = 1|+) = 2/5 = 0.4,
P(A = 0|+) = 2/5 = 0.4, P(B = 0|+) = 4/5 = 0.8,
P(C = 0|+) = 3/5 = 0.6.
(b) Use the estimate of conditional probabilities given in the previous question to predict the class label for a test sample (A = 0,B = 1, C = 0) using the na¨Ä±ve Bayes approach.
Answer:
Let P(A = 0,B = 1, C = 0) = K.
P(+|A = 0,B = 1, C = 0)

Consider the data set shown in Table 5.1
Table 5.1. Data
Consider the data set shown in Table 5.1
Table 5.1. Data

= 0.4 × 0.2 × 0.6 × 0.5/K
= 0.024/K.
P(ˆ’|A = 0,B = 1, C = 0)

Consider the data set shown in Table 5.1
Table 5.1. Data
Consider the data set shown in Table 5.1
Table 5.1. Data

(c) Estimate the conditional probabilities using the m-estimate approach, with p = ½ and m = 4.
Answer:
P(A = 0|+) = (2 + 2)/(5 + 4) = 4/9,
P(A = 0|ˆ’) = (3+2)/(5 + 4) = 5/9,
P(B = 1|+) = (1 + 2)/(5 + 4) = 3/9,
P(B = 1|ˆ’) = (2+2)/(5 + 4) = 4/9,
P(C = 0|+) = (3 + 2)/(5 + 4) = 5/9,
P(C = 0|ˆ’) = (0+2)/(5 + 4) = 2/9.
(d) Repeat part (b) using the conditional probabilities given in part (c).
Answer:
Let P(A = 0,B = 1, C = 0) = K

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Introduction to Data Mining

ISBN: 978-0321321367

1st edition

Authors: Pang Ning Tan, Michael Steinbach, Vipin Kumar

Question Posted: