During the course of an algorithm, we sometimes find that we need to maintain past versions of
Question:
Figure 13.8: (a) A binary search tree with keys 2, 3, 4, 7, 8, 10. (b) The persistent binary search tree that results from the insertion of key 5. The most recent version of the set consists of the nodes reachable from the root r′, and the previous version consists of the nodes reachable from r heavily shaded nodes are added when key 5 is inserted. Assume that each tree node has the fields key, left, and right but no parent field. (See also Exercise 13.3-6.)
a. For a general persistent binary search tree, identify the nodes that need to be changed to insert a key k or delete a node y.
b. Write a procedure PERSISTENT-TREE-INSERT that, given a persistent tree T and a key k to insert, returns a new persistent tree T′ that is the result of inserting k into T.
c. If the height of the persistent binary search tree T is h, what are the time and space requirements of your implementation of PERSISTENT-TREE-INSERT? (The space requirement is proportional to the number of new nodes allocated.)
d. Suppose that we had included the parent field in each node. In this case, PERSISTENT-TREE-INSERT would need to perform additional copying. Prove that PERSISTENT-TREE-INSERT would then require Ω (n) time and space, where n is the number of nodes in the tree.
e. Show how to use red-black trees to guarantee that the worst-case running time and space are O (lg n) per insertion or deletion.
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Introduction to Algorithms
ISBN: 978-0262033848
3rd edition
Authors: Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest
Question Posted: