Effect of weighting class adjustment on variances. Suppose that an SRS of size n is taken. Let

Question:

Effect of weighting class adjustment on variances. Suppose that an SRS of size n is taken. Let Zi =1 if unit i is included in the sample and 0 otherwise, with P (Zi = 1) = n/N. Two weighting classes are used to adjust for non response; define xi =1 if unit I is in class 1 and 0 if unit i is in class 2. Let Ri =1 if unit i responds to the survey and 0 otherwise. Assume that the Ri€™s are independent Bernoulli random variables with P (Ri =1) =xiφ1 + (1 ˆ’ xi) φ2, and that Ri is independent of Z1. . . ZN. The sample sizes in the two classes are n1 = Æ©Ni =1 Zixi and n2 =Æ©Ni =1 Zi (1ˆ’xi); note that n1 and n2 are random variables. Similarly, the number of respondents in the two classes are n1R =Æ©Ni =1 ZiRixi and n2R = Æ©Ni =1 ZiRi (1 ˆ’ xi). Assume the number of respondents in each group is sufficiently large so that E [nc / ncR] ‰ˆ 1/φc for c = 1, 2. With these assumptions, the weighting class adjusted estimator of the mean,
EZ;R;(1 – x;)y: n n2R is Z,R:xy; +

Is approximately unbiased for the population mean yU (see Exercise 17). Find the approximate variance of Å·wc. Use Property A.4 of Conditional Expectation in
Section A.4.

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Sampling Design And Analysis

ISBN: 627

2nd Edition

Authors: Sharon L. Lohr

Question Posted: