For each of the following lists of premises, derive the indicated conclusion and complete the justification. In
Question:
For each of the following lists of premises, derive the indicated conclusion and complete the justification. In problems 4 and 8 you can add any statement you choose.
(1) 1. S ∨ H
2. B ⊃ E
3. R ⊃ G
4. _____ ____, Simp
(2) 1. (N ⊃ T) ∙ (F ⊃ Q)
2. (N ⊃ R) ∨ (F ⊃ M)
3. N ∨ F
4. _______________ ____, CD
(3) 1. D
2. W
3. ____ ____, Conj
(4) 1. H
2. ____ ____, Add
(5) 1. R ∙ (N ∨ K)
2. (G ∙ T) ∨ S
3. (Q ∙ C) ⊃ (J ∙ L)
4. _____________ ____, Simp
(6) 1. ∼R ∨ P
2. (P ⊃ ∼ D) ∙ (∼R ⊃ S)
3. (∼R ⊃ A) ∙ (P ⊃ ∼ N)
4. _____________ ____, CD
(7) 1. (Q ∨ K) ∙ ∼ B
2. (M ∙ R) ⊃ D
3. (W ∙ S) ∨ (G ∙ F)
4. _____________ ____, Simp
(8) 1. E ∙ G
2. ______ ____ , Add
(9) 1. ∼B
2. F ∨ N
3. ____ ____, Conj
(10) 1. S ∨ ∼ C
2. (S ⊃ ∼ L) ∙ (∼C ⊃ M)
3. (∼N ⊃ S) ∙ (F ⊃ ∼ C)
4. ________________ ____, CD
Step by Step Answer:
A Concise Introduction to Logic
ISBN: 978-1305958098
13th edition
Authors: Patrick J. Hurley, Lori Watson