Repeat Exercise 4 using Heuns method. In Exercise 4 a. y' = (2 2ty)/(t 2 +

Question:

Repeat Exercise 4 using Heun’s method.

In Exercise 4

a. y' = (2 − 2ty)/(t2 + 1), 0≤ t ≤ 1, y(0) = 1, with h = 0.1; actual solution y(t) = (2t + 1)/(t2 + 1).

b. y' = y2/(1 + t), 1≤ t ≤ 2, y(1) = −(ln 2)−1, with h = 0.1; actual solution y(t) =−1/(ln(t + 1)).

c. y' = (y2 + y)/t, 1≤ t ≤ 3, y(1) = −2, with h = 0.2; actual solution y(t) = 2t/(1 − 2t).

d. y' = −ty + 4t/y, 0≤ t ≤ 1, y(0) = 1, with h = 0.1; actual solution y(t) =√((4 − 3e−t)2.)

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Numerical Analysis

ISBN: 978-0538733519

9th edition

Authors: Richard L. Burden, J. Douglas Faires

Question Posted: