A small particle of mass m is pulled to the top of a frictionless half-cylinder (of radius

Question:

A small particle of mass m is pulled to the top of a frictionless half-cylinder (of radius R) by a cord that passes over the top of the cylinder, as illustrated in Figure P7.20. (a) If the particle moves at a constant speed, show that F = mg cos θ. (Note: If the particle moves at constant speed, the component of its acceleration tangent to the cylinder must be zero at all times.) (b) By directly integrating, find the work done in moving the particle at constant speed from the bottom to the top of the half-cylinder.

A small particle of mass m is pulled
Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Vector Mechanics for Engineers Statics and Dynamics

ISBN: 978-0073212227

8th Edition

Authors: Ferdinand Beer, E. Russell Johnston, Jr., Elliot Eisenberg, William Clausen, David Mazurek, Phillip Cornwell

Question Posted: