Show that if n = pq, with p and q primes and q > p and q

Question:

Show that if n = pq, with p and q primes and q > p and q ≡ 1 (mod p ), then there is exactly one nonabelian group (up to isomorphism) of order n. Recall that the q - 1 nonzero elements of Zq form a cyclic group Zq* under multiplication modulo q.

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question
Question Posted: