By applying properties of (z)-transform find the (z)-transform of the following sequences given (x[n] stackrel{Z}{longleftrightarrow} frac{z}{left(z^{2}+2ight)}) (a)

Question:

By applying properties of \(z\)-transform find the \(z\)-transform of the following sequences given \(x[n] \stackrel{Z}{\longleftrightarrow} \frac{z}{\left(z^{2}+2ight)}\)
(a) \(y[n]=x[n-3]\)
(b) \(y[n]=n x[n]\)
(c) \(\quad y[n]=x[n+1]+x[n-1]\)
(d) \(x[n]=2^{n} x[n]\)
(e) \(x[n]=(n-2) x[n-1]\)
(f) \(\quad x[n]=x[-n]\)

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question
Question Posted: