Prove the (S U(2)) results in Eq. (5.3.28): (mathbf{2} otimes mathbf{2}=mathbf{3} oplus mathbf{1} ; mathbf{3} otimes mathbf{3}=mathbf{5}
Question:
Prove the \(S U(2)\) results in Eq. (5.3.28): \(\mathbf{2} \otimes \mathbf{2}=\mathbf{3} \oplus \mathbf{1} ; \mathbf{3} \otimes \mathbf{3}=\mathbf{5} \oplus \mathbf{3} \oplus \mathbf{1}\); and \(\mathbf{2 j}_{\mathbf{1}}+\mathbf{1} \otimes\) \(\mathbf{2} \mathbf{j}_{\mathbf{2}}+\mathbf{1}=\oplus_{J=\left|j_{1}-j_{2}\right|}^{j_{1}+j_{2}}(\mathbf{2 J}+\mathbf{1})\).
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Introduction To Quantum Field Theory Classical Mechanics To Gauge Field Theories
ISBN: 9781108470902
1st Edition
Authors: Anthony G. Williams
Question Posted: