Prove the (S U(3)) results in Eq. (5.3.29): (mathbf{3} otimes overline{mathbf{3}}=mathbf{8} oplus mathbf{1} ; mathbf{3} otimes mathbf{3}=mathbf{6}

Question:

Prove the \(S U(3)\) results in Eq. (5.3.29): \(\mathbf{3} \otimes \overline{\mathbf{3}}=\mathbf{8} \oplus \mathbf{1} ; \mathbf{3} \otimes \mathbf{3}=\mathbf{6} \oplus \overline{\mathbf{3}} ; \mathbf{8} \otimes \mathbf{3}=\mathbf{1 5} \oplus \overline{\mathbf{6}} \oplus \mathbf{3}\); and \(\mathbf{3} \otimes \mathbf{3} \otimes \mathbf{3}=\mathbf{1 0} \oplus \mathbf{8} \oplus \mathbf{8} \oplus \mathbf{1}\).

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Question Posted: