Consider the removal of condensable components from the reactor effluent stream of an acetone production process, shown
Question:
Consider the removal of condensable components from the reactor effluent stream of an acetone production process, shown in Figure P14.5. The removal process consists of a cooling water exchanger and a refrigerated water (rw) exchanger, as shown in the figure. For this problem, assume that a downstream acetone stripper will not be used, and all acetone and isopropyl alcohol (IPA) in Stream 5 will be lost and not recovered.
The composition and conditions of Stream 3 are given in the following table. The pressure drop through each exchanger is 0.14 bar. The purpose of the problem is to optimize the recovery of acetone and IPA in Stream 4 by determining the optimal size of heat exchanger E-403. The costs of E-402 and V-402 may be assumed to be fixed. Any acetone lost in Stream 5 should be valued at the equivalent cost of the IPA required to produce it, and the cost of IPA is given in Table 8.4.
Determine the optimal recovery of IPA and acetone for this system using an objective function of the EAOC based on an 8000 h operating year. Any simulations should be carried out using a suitable process simulator using the UNIFAC K-value option and the latent heat enthalpy option. The overall heat transfer coefficient for E-403 may be taken as 200 W/m2K. Utility costs should be obtained from Chapter 8, and the cost of E-403 is approximated by the following equation:
Step by Step Answer:
Analysis Synthesis And Design Of Chemical Processes
ISBN: 9780134177403
5th Edition
Authors: Richard Turton, Joseph Shaeiwitz, Debangsu Bhattacharyya, Wallace Whiting