A company manufactures only one product. The quantity, q, of this product produced per month depends on

Question:

A company manufactures only one product. The quantity, q, of this product produced per month depends on the amount of capital, K, invested (i.e., the number of machines the company owns, the size of its building, and so on) and the amount of labor, L, available each month. We assume that q can be expressed as a Cobb-Douglas production function:

q = cKαLβ,

where c, α, β, are positive constants, with 0 < < 1 and 0 < β < 1. In this problem we will see how the Russian government could use a Cobb-Douglas function to estimate how many people a newly privatized industry might employ. A company in such an industry has only a small amount of capital available to it and needs to use all of it, so K is fixed. Suppose L is measured in man-hours per month, and that each manhour costs the company w rubles (a ruble is the unit of Russian currency). Suppose the company has no other costs besides labor, and that each unit of the good can be sold for a fixed price of p rubles. How many man-hours of labor per month should the company use in order to maximize its profit?

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Applied Calculus

ISBN: 9781119275565

6th Edition

Authors: Deborah Hughes Hallett, Patti Frazer Lock, Andrew M. Gleason, Daniel E. Flath, Sheldon P. Gordon, David O. Lomen, David Lovelock, William G. McCallum, Brad G. Osgood, Andrew Pasquale

Question Posted: