Show that the maximum-likelihood estimate of (beta) satisfies [ left[X^{prime} K^{prime}left(K V K^{prime}ight)^{-1} K Xight] hat{beta}=X^{prime} K^{prime}left(K
Question:
Show that the maximum-likelihood estimate of \(\beta\) satisfies
\[
\left[X^{\prime} K^{\prime}\left(K V K^{\prime}ight)^{-1} K Xight] \hat{\beta}=X^{\prime} K^{\prime}\left(K V K^{\prime}ight)^{-1} Z=X^{\prime} W Q Y
\]
where \(Q: \mathcal{H} ightarrow \mathcal{H}\) is the orthogonal projection with \(\operatorname{kernel} \operatorname{ker}(K)\).
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Question Posted: