Let (mathcal{S}) be the ellipsoid (left(frac{x}{4}ight)^{2}+left(frac{y}{3}ight)^{2}+left(frac{z}{2}ight)^{2}=1). Calculate the flux of (mathbf{F}=z mathbf{i}) over the portion of (mathcal{S})
Question:
Let \(\mathcal{S}\) be the ellipsoid \(\left(\frac{x}{4}ight)^{2}+\left(\frac{y}{3}ight)^{2}+\left(\frac{z}{2}ight)^{2}=1\). Calculate the flux of \(\mathbf{F}=z \mathbf{i}\) over the portion of \(\mathcal{S}\) where \(x, y, z \leq 0\) with upward-pointing normal. Hint: Parametrize \(\mathcal{S}\) using a modified form of spherical coordinates \((\theta, \phi)\).
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Question Posted: