Let (mathcal{S}) be the ellipsoid (left(frac{x}{4}ight)^{2}+left(frac{y}{3}ight)^{2}+left(frac{z}{2}ight)^{2}=1). Calculate the flux of (mathbf{F}=z mathbf{i}) over the portion of (mathcal{S})

Question:

Let \(\mathcal{S}\) be the ellipsoid \(\left(\frac{x}{4}ight)^{2}+\left(\frac{y}{3}ight)^{2}+\left(\frac{z}{2}ight)^{2}=1\). Calculate the flux of \(\mathbf{F}=z \mathbf{i}\) over the portion of \(\mathcal{S}\) where \(x, y, z \leq 0\) with upward-pointing normal. Hint: Parametrize \(\mathcal{S}\) using a modified form of spherical coordinates \((\theta, \phi)\).

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Calculus

ISBN: 9781319055844

4th Edition

Authors: Jon Rogawski, Colin Adams, Robert Franzosa

Question Posted: